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Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Frequency Domain Techniques

Another way to look at a feedback system

G(jw) is a filter with a gain and a phase shift

K(jw) is a pre-filter which warps the frequency response

This turns a poor system into a good system

G(jw)K(jw)
R Y

plantcompensator

Frequency domain:  Another way of looking at a feedback system



Frequency Domain Origins
Hedrik Bode: 1938 (Bode Plots)

Harry Nyquist: 1917 - 1954 Bell Labs

Nathaniel Nichols: 1940's MIT

Problem:  Design feedback amplfiers and anti-aircraft guns for WWII

Sometimes, the feedback made a very good amplifier.  Sometimes, the amplifier

would just squawk and ring.  The idea behind K(jw) was to add a pre-filter to make a

bad amplifier behave like a good amplifier.

Vacuum Tube Amplifier (Amazon.com,  where else?)



Which technique is Better?
Students who learn Root Locus first tend to prefer that method

Students who learn frequency-domain techniques first tend to prefer these methods

They both work.

Some systems are easier to analyze using root locus

Some systems are easier to analyze using frequency domain techniques

These are toos for you to use.  

Use the one that works best for you.



Types of Frequency-Domain Plots

How to plot 3 variables:

The frequency, w

The gain, |G(jw|, and

The phase shift:  ∠G(jω)

Name X-Axis Y-Axis

Bode Plot Frequency on a log scale Gain in dB

Nichols Chart Phase in degrees Gain in dB

Nyquist Diagram real( G(jw) ) imag( G(jw) )

Inverse Nyquist Diagram real( 1/G(jw) ) imag( 1/G(jw) )



Bode Plots

When we first started out in this class, we looked at

Finding the step response given the transfer function, G(s), and

Finding the transfer function, G(s), given the step response.

In this lecture, we look at 

Finding the frequency response given the transfer function, G(s), and

Finding G(s) given the frequency response.In this lecture, we're looking at Bode Plots.

Definitions

gain = G(jω)

dB = 20 log
10(gain)

gain = 10dB/20



Determine the Frequency Response given G(s)
Numerical Methods (Matlab)

Graphical Methods

Probably easiest to explain through an example:

Problem:  Draw the Bode plot for

G(s) = 


10s(s+100)

(s+1)(s+10)





Numerical Solution (Matlab):

Substitute

G(s) = 


10s(s+100)

(s+1)(s+10)



s→jω

Calculate the gain and plot

X axis: frequency on a log scale

Y axis:  gain in dB

In Matlab:

w = logspace(-1,3,250)';

s = j*w;
Gs = 10*s.*(s+100) ./ ( (s+1) .*

(s+10) );

dB = 20*log10(abs(Gs));

semilogx(w,dB);
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Matlab Function:  Bode2

Bode plots are really useful, so you can also write a Matlab m-file to do this

   function [Gw ] = Bode2( G, w )

      Gw = 0*w;

      for i=1:length(w)
         Gw(i) = evalfr(G, j*w(i));

         end

      GdB = 20*log10(abs(Gw));

      semilogx(w, GdB);

      end

This is called as

G = zpk([0,-100],[-1,-10],10);

w = logspace(-1,3,250)';

Gw = Bode2(G,w);

semilogx(w, 20*log10(abs(Gw)));



Graphical Solution:
Works better when using a slide rule

Offers better insight

First, note that the function

G(s) = sn

plots as a straight line.  The gain is

dB = 20 log 10( (jω)
n

)

      = 20n log 10(ω)

which is a slope of 20ndB/decade

example: n = -2

G(s) = 1

s2
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Next, approximate

(s + a) ≈





a s < a

s s > a

This gives

G(s) = 


10s(s+100)

(s+1)(s+10)

 ≈






















10s(100)

(1)(10)

 = 100s s < 1




10s(100)

s(10)

 = 100 1 < s < 10




10s(100)

(s)(s)

 = 1000

s 10 < s < 100




10s(s)

(s)(s)

 = 10 10 100 < s

Note:  At the corners, the gain is

Down 3dB for a pole

Up 3dB for a zero

3dB = 2



G(s) = 


10s(s+100)

(s+1)(s+10)


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Bode Plots with Complex Poles

Complex poles come in pairs

There are two poles with the same magnitude,

The slope changes by -40dB/decade

The gain at the corner tells you ζ

G(s) = 1

s2+2ζs+1 s=j
= 1

2ζ

For complex poles, the gain at the corner is 1

2ζ



Complex Pole Example

G(s) =





1000s2


s

2+1.4s+1

s

2+5s+100






At 1 rad/sec    At 10 rad/sec

=0.5                                                                                    ζ ζ = 0.25

 Gain at corner = 0dB above the corner                               Gain at corner = +6dB
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Determining G(s) from its Bode Plot

Find G(s) given the Bode plot
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Step 1:  Draw in the asymptotes.

G(s) ≈ 


ks2

(s+1∠±θ)(s+10∠±φ)



Note:  Each line must have a slope of 20n dB/decade

10dB/decade, for example, implies half of pole or zero, meaning a half derivative.
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G(s) ≈





ks2


s+1∠±600 



s+10∠±75.50 








1 rad/sec 10 rad/sec

gain at corner = 0dB above corner    gain at corner = +6dB

                     ζ = 0.5 θ = 600 ζ = 0.25 φ = 75.50
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Step 3:  Solve for k:

At 0.1 rad/sec, the gain is -20dB (0.1)

−20dB = 0.1 = ks2


s+1∠±600 



s+10∠±75.50 

 s=j0.1

k = 9949.5
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Example 2:  Determine G(s) given G(jw)
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Example 2:  Find G(s)



Step 1:  Draw in the asmptotes.

Start with two.  ζ = 1.77
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Approximating G(s) with two asymptotes.  The gain at the corner is down too much



Add more asymptotes

G(s) ≈ 


k

(s+1.1)(s+3.3)(s+12)(s+30)



Find k

Match the gain somewhere

G(j0.1) = 12dB = 3.98

= 


k

(s+1.1)(s+3.3)(s+12)(s+30)



s=j0.1

k = 5225

G(s) ≈ 


5225

(s+1.1)(s+3.3)(s+12)(s+30)


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Handout:  Determine G(s) given the Bode plot
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Summary:

Given G(s), you can find the frequency response

Substitute s = jw

Use Matlab to evaluate at a bunch of points

Given the frequency response, you can find G(s)

Plot as a Bode plot (log-w vs. dB)

Add asymptotes at multiples of 20dB / decade

Corners tell you where the poles & zeros are

Gain at the corners tell you the damping ratio


