
Digital Control of a DC Servo
Motor

ECE 461/661 Controls Systems

Jake Glower - Lecture #34

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Problem:
Control the speed of a DC servo motor

Control the position of a DC servo motor

The mathematical model from before:

Clifton 000-053479-002

ω ≈ 


39.28

s+6

Va

θ ≈ 


39.28

s(s+6)


Va

With T = 20ms

ω ≈ 


0.7404

z−0.8869

Va

θ ≈ 


0.02z

z−1





0.7404

z−0.8869

Va

0 0.5 1 1.5
0

10

20

30

40

50

60

70

Time (seconds)

Speed (rad/sec)

Hardware Setup

Use a microcontroller to compute speed (or angle),

Also use it to implement K(z)

AMD 30A8T

Motor

Speed

R

optical encoder

PIC Board

Motor +

Motor -

Ref+

Ref-

K(z)

Software K(z)

Speed Control: Gain Compensation

G(s) = 


39.28

s+6



T = 20ms

G(z) = 


0.7404

z−0.8869



K(s) = k

GK = 


0.7404k

z−0.8869



0.7404z

z - 0.8869
k

wR E

G(z)K(z)

Predicted Response

(GK)
s = −1

z =0.6

k = 0.3875

z = 0.4

k = 0.6576

z = 0.2

k = 0.9277

10.80.60.40.20
-j0.6

-j0.4

-j0.2

0

j0.2

j0.4

j0.6

z = 0.6

k = 0.3875

z = 0.4

k = 0.6576

z = 0.2

k = 0.9277

Experimental Results:

z =0.6

k = 0.3875

z = 0.4

k = 0.6576

z = 0.2

k = 0.9277

Code:

while(1) {

:

:

E = REF - SPEED;

U = 0.9722 * E;

D2A(U);

Wait_20ms();

}

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

Speed (rad/sec)

k = 0.3875

k = 0.9277

Speed Control: I Compensation

K(z) = 


kz

z−1



GK = 


0.7404k⋅z

(z−1)(z−0.8869)




Type-1 System

No Error for a Step Input

Code:
while(1) {

:

:

E = REF - SPEED;

U = U + k * E;

D2A(U);

Wait_20ms();

}

0.7404z

z - 0.8869

wR E

G(z)K(z)

kz

z - 1

I Compensation

z = 0.99




0.7404k⋅z

(z−1)(z−0.8869)




z=0.99
= −1

k = 0.0013

z = 0.95




0.7404k⋅z

(z−1)(z−0.8869)




z=0.95
= −1

k = 0.0045

z = 0.9434 + j0.0535




0.7404k⋅z

(z−1)(z−0.8869)




z

= −1

k = 0.0082

0.875 0.9 0.925 0.95 0.975 1
-j0.075

-j0.05

-j0.025

0

j0.025

j0.05

j0.075

z = 0.99z = 0.95

z = 0.94 + j0.05

k = 0.0013k = 0.0045

k = 0.0082

Experimental Results
I Compensation

Steady-state speed = 10 rad/sec

No Error for a step input

Type-1 system

The response is what the root locus plot

predicted

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

Time (seconds)

Speed (rad/sec)

z = 0.99

z = 0.95

z = 0.94 + j0.05

Speed Control: PI Control

K(z) = k
z−0.8869

z−1



GK = 


0.7404k

z−1



Code:
while(1) {

:

E1 = E0;

E0 = REF - SPEED;

U = U + k * (E0 - 0.8869*E1);

D2A(U);

Wait_20ms();

}

10.80.60.40.20
-j0.6

-j0.4

-j0.2

0

j0.2

j0.4

j0.6

z = 0.8

k = 0.2701

z = 0.6

k = 0.5402

PI Control: Experimental Results

z = 0.99

k = 0.0135

z = 0.9

k = 0.1351

z = 0.6

k = 0.5402

Again, the results are what the root locus plot

predicts

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

11

12

Time (seconds)

Speed (rad/sec)

z = 0.99

z = 0.9

z = 0.6

Position Control:
Change the sensor to an angle sensor and you have position control

θ = 


39.28

s(s+6)


Va = 


0.0148z

(z−1)(z−0.8869)


Va

AMD 30A8T

Motor

Angle

R

optical encoder

PIC Board

Motor +

Motor -

Ref+

Ref-

K(z)

Software K(z)

.

Position Control: K(z) = k

θ = 


0.0148z

(z−1)(z−0.8869)


Va

z = 0.99

k = 0.2291

z = 0.95

k = 0.458

z = 0.95 + j0.05

k = 1.1456

0.875 0.9 0.925 0.95 0.975 1
-j0.075

-j0.05

-j0.025

0

j0.025

j0.05

j0.075

z = 0.99z = 0.95

z = 0.94 + j0.05

k = 0.2291k = 0.458

k = 1.1456

Position Control: K(s) = k
Experimental Results

In theory, the steady-state error is zero

Type-1 System

In practice, static friction causes a slight error

Otherwise, the response is what the root locus

plot predicts

0 1 2 3 4
-2

-1

0

1

2

3

4

5

6

7

Time (seconds)

Angle

Set Point

Angle

Lead Compensation
Cancel the pole at s = -6

Replace it with a pole at s = -19.2

K(z) = k
z−0.8869

z−0.3



 GK = 


0.0148z

(z−1)(z−0.3)




z = 0.4514 + j0.3102

k = 26.8

K(z) = 26.8
z−0.8869

z−0.3



0 0.2 0.4 0.6 0.8 1 1.2
-j

-0.8j

-0.6j

-0.4j

-0.2j

0

0.2j

0.4j

0.6j

0.8j

j

z = 0.45 + j0.31

k = 26.8

Lead Compensation:

K(z) = 26.8
z−0.8869

z−0.3



Again, the experimental results are what root

locus plots predicted

Slight steady-state error due to static friction

(nonlinear terms)

Code:

while(1) {

:

E1 = E0;

E0 = REF - SPEED;

U = 0.3*U + k * (E0 - 0.8869*E1);

D2A(U);

Wait_20ms();

}

0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

Angle

Set Point

Angle

Summary

Root locus really works

It predicts how the system will behave as the gain changes

The response is as the root locus plot predicts

Digital Control also really works

It saves hardware: you don't need to build an op-amp circuit

It removes the DC offset that op-amps have

Download a new program and you have a new controller

