
Digital PID Control
ECE 461/661 Controls Systems

Jake Glower - Lecture #32

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Digital PID Control

Similar to analog PID control except

P: Proportional

I: Integral

D: Delay

P:

K(z) = P

PI:

K(z) = P + I
z

z−1

 = k

z−a

z−1



PID:

K(z) = P + I
z

z−1

 + D

1
z

 = k

(z−a)(z−b)

z(z−1)




Example: G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)




Design P, PI, PID

20% Overshoot

T = 50ms

Step 1: Convert G(s) to the z-Domain

s = -2 z = 0.9048

s = -4 z = 0.8187

s = -6 z = 0.7408

s = -8 z = 0.6703

G(z) ≈ 


kz2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Matching the DC gain:

Gs(s = 0) = Gz(z = 1) = 2.6042

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Add two zeros at z = 0 to match the delay

P Compensation: K(z) = P = k.

Method #1: Analyze the system in the z-plane.

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Sketch the root locus

Find where the damping is 0.4559

G = zpk([0,0],[0.9048,0.8187,0.7408,0.6703],0.003841);

k = logspace(-2,2,300)';

R = rlocus(G,k);

% add in the damping line

s = [0:0.01:10]' * (-1+j*2);

T = 0.05;

z = exp(s*T);

plot(real(R'), imag(R'), 'b', real(z),imag(z),'r');

This gives

z = 0.9224 + j0.1289

and

G(z) = -2.4547k = -1

k = 0.4047

Method #2: Model the sample and hold with a 1/2 sample delay:

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 (e−0.025s

)

Search along the damping ratio of 0.4559

s = α∠117.12290

Iterate until the angles add up to 180 degrees

s = -1.3887 + j2.7111

z = 0.9244 + j0.1261

At any point on the root locus, GK = -1

G(s) = -2.5892

so

k = 0.3862

0-1-2-3-4-5
0

j

j2

j3

j4

j5

j6

j7

j8

j9

j10

Search until

angle is

180 degrees

PI Compensation: K(z) = k
z−a

z−1



Add a zero at s = 0 (z = 1)

Makes it a Type-1 system

Method #1: Design in the z-plane.

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Cancel the slowest pole

K(z) = k
z−0.9048

z−1



Sketch the resulting root locus:
G = zpk([0,0],[1,0.8187,0.7408,0.6703],0.003841);

k = logspace(-2,2,1000)';

R = rlocus(G,k,0.4559)';

// damping lines from before

plot(real(R), imag(R), 'b', real(z),imag(z),'r');

Find z:

z = 0.9522 + j0.0840

This gives

G(z) = -3.4289

k = 0.2908

K(z) = 0.2908
z−0.9048

z−1



Method #2: G(s) * Sample & Hold * K(z):

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 ⋅ (e−0.025s

) ⋅ k
z−0.9048

z−1



Search in the s (and corresponding z) plane

s = 0.8734 + j1.7050

z = 0.9538 + j0.0815

At any point on the root locus, GK = -1

GK = -3.6004

k = 0.2777

so

K(z) = 0.2777
z−0.9048

z−1



Verify your design in VisSim.

0-1-2-3-4-5
0

j

j2

j3

j4

j5

j6

j7

j8

j9

j10

Search until

angle is

180 degrees

Note:

Almost the same result

Latter method is more

accurate

I:

Initial guess for U is

zero

Pole at s = -2 slows

down the system

PI:

Initial guess for U is

0.2777

PID Compensation: K(z) = k
(z−a)(z−b)

z(z−1)




Method #1: Convert to the z-plane

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Cancel two poles

K(z) = k
(z−0.9048)(s−0.8187)

z(z−1)




Sketch the resulting root locus:

G = zpk([0,0],[1,0,0.7408,0.6703],0.003841);

k = logspace(-2,2,1000)';

R = zlocus(G,k,0.4559)';

// add damping line from before

plot(real(R), imag(R), real(z),imag(z));

Find z:

z = 0.9164 + j0.1373

At this point

GK = -0.3524k = -1

k = 2.8381

and

K(z) = 2.8381
(z−0.9048)(s−0.8187)

z(z−1)




Method #2: G(s) * Sample & Hold * K(z) is

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 ⋅ (e−0.025s

) ⋅ k
(z−0.9048)(s−0.8187)

z(z−1)




Search along the damping line until angles add up to 180 degrees

s = -1.4422 + j2.8155

z = 0.9212 + j0.1305

At this point, GK = -1

GK = -0.3824k = -1

k = 2.6153

so

K(z) = 2.6153
(z−0.9048)(s−0.8187)

z(z−1)




0-1-2-3-4-5
0

j

j2

j3

j4

j5

j6

j7

j8

j9

j10

Search until

angle is

180 degrees

Note:

Two zeros allow

you to speed up

the system

You get an impulse

at k=1

Handout: Design a PI compensator for

G(z) = 


0.1

(z−0.9)(z−0.5)




that results in a damping ratio of 0.4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

j0.2

j0.4

j0.6

j0.8

j

j1.2

0

0.2

0.4

0.6

0.8

z-Plane

Changing the Sampling Rate

The 2% settling time is 3 seconds

T = 50ms is too fast

Gives 60 samples

Results in an impulse for PID

Energy is width * height

Needs a height of 2.6153 (off graph) to provide enough energy

T = 200ms is more reasonable

15 samples in 3 seconds

More width means less height for U at k=0

PID with T = 200ms

Plant * Sample & Hold * K(z)




1000

(s+2)(s+4)(s+6)(s+8)


 ⋅ e−0.1s ⋅ k

(z−0.6703)(z−0.4493)

z(z−1)




Note: Zeros move in the z-plane as z = esT

Search along the damping line:

s = -1.0747 + j 2.1494

z = 0.7332 + j 0.3362

k = 0.6893

and

K(z) = 0.6893
(z−0.6703)(z−0.4493)

z(z−1)




0-1-2-3-4-5
0

j

j2

j3

j4

j5

j6

j7

j8

j9

j10

Search until

angle is

180 degrees

This is about the same response as we had before, only with

A much more reasonable input at t = 0 (0.689 vs. 2.615)

A much slower sampling rate (200ms vs 50ms)

Faster sampling rates are not always good. They can actually cause problems.

Summary:

Digital PID control is similar to analog PID

P: Gain compensation

I: Add an integrator (make the system type-1)

PI: Add an integrator and one zero. Cancel one pole with the zero

PID:Add an integrator and two zeros. Cancel two poles

The main difference is 'D' stands for delay rather than derivative

