
Root Locus in the z-Domain
ECE 461/661 Controls Systems

Jake Glower - Lecture #31

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Root Locus in the z-Domain

Goal:  Find K(z) for a "good" response

Note:  Relative to the microcontroller

The feedback system looks like it's a discrete-time system.

It looks like it's in the z-domain.
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Mathematically, the open-loop transfer function is

H(s) G(s) K(z)

H(s) Sample and Hold

G(s) Analog Plant

K(z) Digital Controller

H(s) looks like a 1/2 sample

delay

H(s) ≈ exp −
sT

2



Lump H(s) and G(s) together

H(s) G(s) ⇒ G(z)

E
exp(sT/2) K(z) G(s)

plantCompensatorSample & Hold

G(z)

R



The closed-loop system is

Y = 


GK

1+GK

R

If GK has zeros and poles:

GK = k
z
p

the closed-loop transfer function becomes

Y = 


kz

p+kz

E

The roots of the closed-loop system are:

p(z) + k z(z) = 0

Note:  This is identical to the s-plane

p(s) + k z(s) = 0

K(z) G(z)
R Y

Compensator Plant & ZOH



Root Locus in the z-plane

Exactly the same as the s-plane

The only difference is how to interprit the results:  z = esT
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2% Settling Time:

Determined by the magnitude of the poles

zk = 0.02

k =
ln(0.02)

ln(z)

A pole at z = 0.95 has a 2% settling time of 73 samples (round  up)

  samplesk =
ln(0.02)

ln(0.95)
= 72.26

A pole at z = 0.8 has a 2% settling time of 18 samples

 samplesk =
ln(0.02)

ln(0.8)
= 17.53



Similarly, for any pole, the amplitude tells you the settling time as

z k = 0.02 k =
ln(0.02)

ln ( z )

Step Response: Pole at { 0.95 (red),  0.9 (blue), 0.8 (green), and 0.7 (pink).  T = 0.01 second



Frequency of Oscillation:

Determined by the angle of the poles

  samplesperiod= 3600

angle

Poles at

Period = 40 samples0.95∠ ± 90

Period = 20 samples0.95∠ ± 180



Overshoot (Damping Ratio)

Follows a log spiral

Convert to the s-plane to find the damping

ratio

Damping Ratio s-plane z-plane

0 -1∠ ± 900 0.9950 + j0.0998

0.2 -1∠ ± 78.460 0.9755 + j0.0959

0.4 -1∠ ± 66.420 0.9568 + j0.0879

0.6 -1∠ ± 53.130 0.9388 + j0.0753

0.8 -1∠ ± 36.860 0.9214 + j0.0553

1 -1∠ ± 00 0.9048 + j0



Gain Compensation in the z-Plane

Assume

G(s) = 


1000

(s+5)(s+10)(s+20)




Find K(z) = k

T = 10ms

No overshoot,

20% overshoot, and

The maximum gain for stability.



Step 1:  Convert G(s) to G(z).

G(s) = 


1000

(s+5)(s+10)(s+20)




With T = 0.01 second

G(z) ≈ 


0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)






Step 2:  Draw the root locus of G(z)

Add the damping line

T = 0.01;

Gz = zpk(0, [0.9512, 0.9048, 0.8187],

0.0008413);

k = logspace(-2,2,1000)';

R = rlocus(G,k);

% draw the damping lines on this graph

hold on

s = [0:0.01:100] * (-1+j*2);

z = exp(s*T);

plot(real(z),imag(z),'r')

 

s = [0:0.01:100] * (j*1);

z = exp(s*T);

plot(real(z),imag(z),'r')



Step 3:  Pick a spot on the root locus

a)  No overshoot.

This is the breakaway point

z = 0.9305

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9305
= 13.1620∠1800

K =
1

13.1620
= 0.0760

This results in

  samples   (0.543 seconds)t2% =
ln(0.02)

ln(0.9305)
= 54.3

Kp = 0.0760



Step Response with K(z) chosen to place the poles at the breakaway point (no overshoot).



b)  20% overshoot.  

z = 0.9513 + j0.0873

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9513+j0.0873
= 0.5867∠1800

K(z) is then

K =
1

0.5867
= 1.7044

This results in

 samplest2% =
ln(0.02)

ln( 0.9513+j0.0873 )
= 85.52

Kp = 1.7044



Step Response with K(z) chosen for 20% overshoot



c) Max Gain for Stability (the jw crossing).

z = 0.9850 + j0.1723  

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9850+j0.1723
= 0.1053∠1800

meaning

K(z) =
1

0.1053
= 9.5008

The frequency of oscillation is

∠z = 9.92150

period =  samples3600

9.92150
= 36.28

 = 0.3628 seconds

 2.75 Hzf =
1

period
=





Alternate Method:

Find the spot on the damping line where the angles add up to 180 degrees

G ⋅ K = 1∠1800

When you have a digital compensator, you really have three terms:

G(s) * K(z) * sample and hold

E
exp(sT/2) K(z) G(s)

plantCompensatorSample & Hold

Matlab can analyze each of these

You don't have to do s to z conversions



Modeling the Sample & Hold

Sample and hold adds a 1/2 sample delay

H(s) ≈ exp 
−sT

2



3Hz sine wave (blue) sampled at 10ms (red) results in a 3Hz sine wave delayed by 1/2 of a sample (5ms)



Open-Loop System is then

G(s) ⋅ K(z) ⋅ exp 
−sT

2



Find the point on the damping line where the phase is 180 degrees

∠
G(s) ⋅ K(z) ⋅ exp 

−sT

2



 = 1800

Note:  You're kind-of mixing planes with this approach. Since you only care about

one point, however, you don't care.  You just

Guess the point, s

Compute the corresponding point in the z-plane as z = esT

Evaluate the above function, and

Repeat until the angles add up to 180 degrees



Example:  Find the gain, k, that results in 20% overshoot in the step response.

Guess #1:  s = -5 + j10
T = 0.01;

s = 5*( -1 + j*2);

z = exp(s*T);

1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)

  - 0.5009862 + 0.0882455i  

The angle isn't zero (the complex part is non-zero)

Try a different s, such as 10% smaller 

s = s*0.9;

z = exp(s*T);

1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)

  - 0.5110062 + 0.0796359i  

 



Keep going until the complex part is zero

Angle is 180 degrees

time pases.....

s = 0.9999*s;

1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)

ans =  -0.5853 - 0.0000i

Close enough.  This gives

>> k = 1/abs(ans)

k =    1.7085

>> s

s =  -4.5760 + 9.1519i

>> z

z =   0.9465 + 0.0950i



Note:

The numerical method gives almost the same answer as root locus

It's easier and is actually more accurate

no s to z conversions

Root Locus Numerical Approach

k 1.7044  1.7085

s -  -4.5760 + 9.1519i

z 0.9513 + j0.0873  0.9465 + 0.0950i



Handout:  Sketch the root locus of

G(z) = 


0.2

(z−0.9)(z−0.5)




Find k for

The breakaway point

A damping ratio of 0.4

The maximum gain for stability
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Summary

Root locus works in the s-plane

Root locus works in the z-plane

The only difference is how you interpret the result:

Ts = 


ln(0.02)

ln ( z )



secondsperiod = 


3600

∠(z)

 ⋅ T

z = esT


