
Converting G(s) to G(z)
ECE 461/661 Controls Systems

Jake Glower - Lecture #30

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Digital Control Systems

Often times, the compensator, K(s), will be implemented with a microcontroller.

The result is a hybrid system:  both analog and discrete

Makes analysis difficult

Relative to the microcontroller, the world looks discrete:

You output a control signal every T seconds,

Through the system dynamics, this results in an error, sampled every T seconds as well.

Convert everything to the z-domain

Now you can analyze the closed-loop system

K(z)A/D

T

Sample

D/A G(s)

G(z)

R Y



Converting G(s) to G(z)

Method 1:  Substitution

sY means the derivative of Y

Euler - Backward Difference

s ≈ 


z−1

T



Euler - Forward Difference:

s ≈ 


z−1

Tz



Bilinear

s ≈
2

T



z−1

z+1



Time

y(t)

Euler Integration

Time

y(t)

Bilinear Integration



Example:  Find the z-transform of G(s)

Assume a sampling rate of 100ms (T = 0.1).

G(s) = 


100

(s+1)(s+3)(s+10)




a)  Using Euler Forward Difference:

G(s) = 


100

(s+1)(s+3)(s+10)




G(z) ≈





100






z−1

Tz

 +1






z−1

Tz

 +3






z−1

Tz

 +10






G(z) = 


0.03497z3

(z−0.9091)(z−0.7692)(z−0.5)





In Matlab:  Input the system in the s-plane

Gs = zpk([],[-1,-3,-10],100)

 

       100

------------------

(s+1) (s+3) (s+10)

 

If you add one more term, Matlab interprets this as a discrete-time system with the

last term being the sampling rate:

Gz = zpk([0,0,0],[0.9091,0.7692,0.5],0.03497,0.1)

 

         0.03497 z^3

-----------------------------

(z-0.9091) (z-0.7692) (z-0.5)

Sampling time (seconds): 0.1



To plot the step response of the two systems together

Plot the step response of G(z)

Type hold on to keep this plot

Plot the step response of G(s) on top of the G(z) graph

step(Gz)

t = [0:0.01:8]';

ys = step(Gs,t);

hold on

plot(t,ys,'r')



Bilinear:

G(s) = 


100

(s+1)(s+3)(s+10)




G(z) ≈





100




2

T



z−1

z+1

 +1




2

T



z−1

z+1

 +3




2

T



z−1

z+1

 +10






G(z) ≈ 


0.00690(z+1)3

(z−0.9047)(z−0.7391)(z−0.3333)





Method #2:  Transform Poles and Zeros (my preference)

LaPlace transforms assume

y = est

z-transforms assume

y = zk

Assume

t = kT

y = es(kT) = e(sT)k = (esT
)

k
= zk

The conversion from the s-plane to the z-plane is

z = esT



Procedure:

i)  Convert every pole and zero as

z = esT

ii)  Add a gain to match the DC gain

iii)  (optional)  Add n zeros at z = 0 to match the phase at a frequency close to zero

- or - 

Add n zeros at z = 0 to match the delay in the system.



Example:  G(z).  Assume T = 0.1

G(s) = 


100

(s+1)(s+3)(s+10)




In Matlab

s = [-1, -3, -10]

 

  -1.00     -3.00     -10.00  
 

T = 0.1;

  

z = exp(s*T)

 

    0.9048374      0.7408182      0.3678794  

Meaning

G(z) = 


k

(z−0.9048)(z−0.7408)(z−0.3687)






Match the DC gain




100

(s+1)(s+3)(s+10)




s=0
= 3.3333




k

(z−0.9048)(z−0.7408)(z−0.3687)




z=1
= 3.33333

k = prod(1-z) * 3.3333

 

    0.0591691 

meaning

G(z) = 


0.059169

(z−0.9048)(z−0.7408)(z−0.3687)






To find how many zeros belong at z=0, 

a)  There is too much delay with this system.  Adjust by adding zeros at z = 0

b)  Match the phase at some frequency, such as s = j1




100

(s+1)(s+3)(s+10)




s=j1
= 2.2249∠ − 69.140




0.051969

(z−0.9048)(z−0.7408)(z−0.3687)




s=j

= 2.2276∠ − 78.040

z = esT = e(j1)(0.1) = 1∠5.730

Add 1.55 zeros at z=0 to make the phase match

Round up to 2 or round down to 1 

G(z) ≈ 


0.051969⋅z

(z−0.9048)(z−0.7408)(z−0.3687)








In Matlab:  Input the system G(s)

Gs = zpk([],[-1,-3,-10],100)

 

       100

------------------

(s+1) (s+3) (s+10)

 

Input G(z).  For now, assume the numerator is 1

T = 0.1;

Gz = zpk([],[exp(-1*T),exp(-3*T),exp(-10*T)],1,T)

 

               1

--------------------------------

(z-0.9048) (z-0.7408) (z-0.3679)
 

Sampling time (seconds): 0.1



Add a gain, k, so that the DC gain matches up

DCs = evalfr(Gs,0)

    3.3333

DCz = evalfr(Gz,1)

   64.1401

k = DCs / DCz

    0.0520

So, G(z) is.

Gz = zpk([],[exp(-1*T),exp(-3*T),exp(-10*T)],k,T)

 

            0.05197

--------------------------------

(z-0.9048) (z-0.7408) (z-0.3679)

 

Sampling time (seconds): 0.1



Checking the answer:  Plot the step response of G(z) and G(s)

Add zeros at z=0 to remove the time delay
step(Gz)

hold on

t = [0:0.001:8]';

ys = step(Gs,t);

plot(t,ys,'r');



Example 2: Complex Poles

This also works with complex poles and zeros

G(s) = 


100(s+j5)(s−j5)

(s+1+j4)(s+1−j4)(s+20)




sn = [j*5,-j*5]'

T = 0.1

zn = exp(sns*T)

    0.8775826 - 0.4794255i  

    0.8775826 + 0.4794255i  

 

poly(nz)

    1.  - 1.7551651    1.  

 

sd = [-1+j*4,-1-j*4,-20]'

 

  - 1. - 4.i  

  - 1. + 4.i  

  - 20.       



 

zd = exp(sd*T)

 

    0.8334105 - 0.3523603i  

    0.8334105 + 0.3523603i  

    0.1353353               

 

poly(zd)
 

    1.  - 1.8021562    1.0443104  - 0.1108032  

 

meaning

G(z) = k
z2−1.755z+1.

z3−1.802z2+1.044z−0.110






To find k, match the DC gain:

DC = 100*25/340

 

    7.3529412  

 

k = DC*prod(1-zd)/prod(1-zn)

    3.9447681  

 G(z) = 3.944
z2−1.755z+1.

z3−1.802z2+1.044z−0.110






In Matlab:  Input the system G(s)

z1 = j*5;

z2 = -j*5;

p1 = -1+j*4;

p2 = -1-j*4;

p3 = -2;

Gs = zpk([z1,z2],[p1,p2,p3],100)

 

   100 (s^2 + 25)

---------------------

(s+2) (s^2 + 2s + 17)
 

Now input G(z).  Convert the poles and zeros to the z-plane as esT. 

T = 0.1;

Gz = zpk([exp(z1*T),exp(z2*T)],[exp(p1*T),exp(p2*T),exp(p3*T)],1,T)

 

        (z^2 - 1.755z + 1)

----------------------------------

(z-0.8187) (z^2 - 1.667z + 0.8187)

 

Sampling time (seconds): 0.1



Add a gain, k, to make the DC gains match up:

DCs = evalfr(Gs,0)

   73.5294

DCz = evalfr(Gz,1)

    8.8913

k = DCs / DCz

    8.2699

So, the discrete-time model for G(s) is....

Gz = zpk([exp(z1*T),exp(z2*T)],[exp(p1*T),exp(p2*T),exp(p3*T)],k,T)

 

    8.2699 (z^2 - 1.755z + 1)

----------------------------------

(z-0.8187) (z^2 - 1.667z + 0.8187)

 

Sampling time (seconds): 0.1



Check the result by plotting the step response of G(s) and G(z) on the same graph:

step(Gz)

hold on

t = [0:0.001:5]';

ys = step(Gs,t);

plot(t,ys,'r');

 



Handout:  Determine the discrete-time equivalent of G(s).   Assume T = 0.1 seconds

G(s) = 


20

(s+2)(s+5)






Handout:  Determine the continuous-time equivalent of G(z).  Assume T = 0.1

second

G(z) = 


0.2z

(z−0.8)(z−0.6)






Note:  Changing the Sampling Rate:

z = esT

If you change the sampling rate, G(z) changes

and all of your analysis on G(z) becomes worthless

G(s) = 


100

(s+1)(s+3)(s+10)




At T = 0.1

G(z) ≈ 


0.051969⋅z

(z−0.9048)(z−0.7408)(z−0.3687)




At T = 0.01

G(z) ≈ 


0.00009393⋅z

(z−0.9900)(z−0.9704)(z−0.9048)






Note 2:  Frequency Response of G(z)

If G(s) and G(z) are the same system

They have the step response

They have the same frequency response

w = [0:0.01:30]';

s = j*w;

Gs = 100 ./ ( (s+1) .* (s+3) .* (s+10) );
 

T = 0.1;

z = exp(s*T);

Gz = 0.051969*z ./ ( (z-0.9048) .* (z-0.7408) .* (z-0.3687) );

 

T = 0.01;

z = exp(s*T);

Gz2 = 0.000093938*z ./ ( (z-0.9900).*(z-0.9704).*(z-0.9048) );

 

plot(w,abs(Gs),w,abs(Gz),w,abs(Gz2));

xlabel('Frequency (rad/sec');

ylabel('Gain');
xgrid(4)

 



Gain of G(s) (blue),  G(z) with T = 0.1 (green), and G(z) with T = 0.01 (red)



Summary

There are several ways to convert from G(s) to G(z)

Substitution:

Replace '1/s' with a numerical approximation for integration

Mapping:  

Map the poles and zeros to the z-plane as z = esT

Then match the DC gain

Either method works.  As a check

Both G(s) and G(z) should have similar step responses

Both G(s) and G(z) should have similar frequency responses

Time and frequency are related.  If one matches, the other will too.




