
z Transforms
ECE 461/661 Controls Systems

Jake Glower - Lecture #29

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Hardware vs. Software:

Anything you can do in software you can do in hardware.

Replace K(s) with a microprocessor, K(z)
Microprocessor sees a discrete-time system: G(z)

Here, the microcontroller

Samples the error every T seconds
Reads the analog world through an A/D
Executes a program, K(z)
Outputs data through a D/A

R E
K(z) G(z)

G(s)
R

t=kT

A/D K(z) D/A

Actual Feedback Control System

The world as seen by the microcontroller

YUE

YU

UE

Why use a microcontroller?
Code that ran yesterday should also run today.
DC offsets don't exist in software. Zero plus zero is zero.
If you want a more complex controller, you just add lines of code.
If you want to change the controller, you just download a new program.

Problem with microcontrollers:

Easy to implement difference equations, K(z)
Hard to implement differential equations, i.e. K(s)

Difference Equations
Difference equations describe software
We need a tool to handle difference equations

Example: y(k) = y(k − 1) + 0.2(x(k) − 0.9x(k − 1))

while(1) {

 k = k + 1;

 x1 = x0;

 x0 = A2D_Read(0);

 y1 = y0;

 y0 = y1 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

LaPlace Transforms and Differential Equations

LaPlace transforms assume all functions are in the form of

y = est

This turns differentiation into multiplication by 's'
dy

dt
= s ⋅ est = sY

This turns differential equations into algebraic equations

Assumes algebra is easier than calculus

LaPlace Transform to Differential Equation

Assume

Y = 


8s+3

s2+7s+12


X

then

(s2 + 7s + 12)Y = (8s + 3)X

or

.
d2y

dt2
+ 7

dy

dt
+ 12y = 8dx

dt
+ 3x

z-Transform and Difference Equations

Assume all functions are in the form of

y = zk

then

y(k + 1) = zk+1 = z ⋅ zk = z ⋅ y(k)

zY means "the next value of Y."

z-Transforms turn difference equations into algebraic equations in z.

Implementing K(z) in Software
Writing a program to implement K(s) is hard
Writing a program to implement K(z) is easy

Assume

Y = K(z) X = 


a2z2+a1z+a0

z3+b2z2+b1z+b0


X

i) Cross multiply:

(z3 + b2z2 + b1z + b0)Y = (a2z2 + a1z + a0)X

ii) Convert back to the time domain, noting that zY means y(k+1):

y(k + 3) + b2y(k + 2) + b1y(k + 1) + b0y(k) = a2x(k + 2) + a1x(k + 1) + a0x(k)

This is the difference equation which relates X and Y.

iii) Time shift so you only use present and past data

y(k) + b2y(k − 1) + b1y(k − 2) + b0y(k − 3) = a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

Solve for y(k)

y(k) = −b2y(k − 1) − b1y(k − 2) − b0y(k − 3) + a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

iv) Write this in code:
while(1) {

 x3 = x2; // x(k-3)
 x2 = x1; // x(k-2)

 x1 = x0; // x(k-1)

 x0 = A2D_Read(0); // read x(k) from the A/D

 y3 = y2; // y(k-3)

 y2 = y1; // y(k-2)

 y1 = y0; // y(k-1)

 y0 = -b2*y1 - b1*y2 - b0*y3 + a2*x1 + a1*x2 + a0*x3;

 D2A(y0); // output y(k) to the D/A converter

 Wait_10ms();

 }

Example 2: Implement the following filter. Assume a sampling rate of 10ms.

Y = 


0.2z(z−0.9)

(z−1)(z−0.5)

X

Solution: Multiply it out

Y = 


0.2(z2−0.9z)

z2−1.5z+0.5


X

Cross multiply and solve for the highest power of zY

(z2 − 1.5z + 0.5)Y = 0.2(z2 − 0.9z)X

z2Y = (1.5z − 0.5Y + 0.2(z2 − 0.9z)X

Y = (1.5z−1 − 0.5z−2Y + 0.2(1 − 0.9z−1)X

meaning

y(k) = 1.5y(k − 1) − 0.5y(k − 2) + 0.2(x(k) − 0.9x(k − 1))

In code, only one line changes

y(k) = 1.5y(k − 1) − 0.5y(k − 2) + 0.2(x(k) − 0.9x(k − 1))

while(1) {

 x2 = x1; // x(k-2)

 x1 = x0; // x(k-1)

 x0 = A2D_Read(0); // read in x(k) from the A/D

 y2 = y1; // y(k-2)

 y1 = y0; // y(k-1)

 y0 = 1.5*y1 -0.5*y2 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

Note:

You can implement K(z) exactly
To change a filter, change one line of code
Complex poles and zeros are easy to implement

- Code doesn't care if polynomials have real or complex roots

The order of the filter is how much data you need to remember
- 3rd-order filters use data from 3 samples ago
- 4th-order filters use data from 4 samples ago

Also

s-domain: Avoid having more zeros than poles
- Results in differentiation
- Amplifies noise

z-domain: Avoid having more zeros than poles
- Results in non-causal system
- Predicts the future

Also also,

You must have integer powers of s
- means "the derivative of Y"s1Y

- means "the 0.3th derivative of Y"s0.3Y

- I don't know what 0.3 derivatives are

You must have integer powers of z
- means "the value of y(k) the previous time you called the subroutine"z−1Y

- means "the value of y(k) the previous 0.3 time you called the subroutine"z−0.3Y

I don't know how to call a subroutine 0.3 times

Handout: Determine the difference equation that relates X and Y

Y = 


0.2z

(z−0.8)(z−0.6)

X

Relating s and z

LaPlace assumes

y(t) = est

Assume

t = kT

y(kT) = eskT = (est)
k = zk

y(k) = zk

This is the assumption behind z-Transforms, implying

z = esT

Phasor analysis for G(s)

Find y(t)

Y = 


20

(s+1)(s+5)

X x(t) = 3 sin(4t)

Express in phasor form

X = 0 − j3

s = j4

Output = Gain * Input

Y = 


20

(s+1)(s+5)



s=j4
(0 − j3) = −2.3816 + j0.2582

meaning

y(t) = −2.3816 cos (4t) − 0.2582 sin (4t)

Phasor Analysis for G(z)

Find y(t).

 T = 10msY = 


0.02z

(z−0.9)(z−0.8)

X x(t) = 3 sin(4t)

Solution: Convert to phasors

X = 0 − j3

s = j4

z = esT = ej0.04 = 1∠2.2910

Y = 


0.02z

(z−0.9)(z−0.8)



z=1∠2.2910
(0 − j3) = −1.4226 − j2.3663

meaning

y(t) = −1.4226 cos (4t) + 2.3663 sin (4t)

It isn't obvious, but G(z) is a filter

Gain varies with frequency

Handout: Determine y(t)

Y = 


0.2z

(z−0.8)(z−0.6)

X

x(t) = 3 cos(4t)

T = 0.1

z-Transforms for various functions

i) Delta Function . The discrete-time delta function isδ(k)

δ(k) =





1 k = 0

0 otherwise

k 0 1 2 3 4 5 6 7

delta(k) 1 0 0 0 0 0 0 0

The z-transform of a delta function is '1', just like the s-domain.

Unit Step: The unit step is

u(k) =





1 k ≥ 0

0 otherwise

It's z-transform can be derives as follows. The unit step is:

k 0 1 2 3 4 5 6 7

u(k) 1 1 1 1 1 1 1 1

(1/z)*u(k) 0 1 1 1 1 1 1 1

Subtract

(1-1/z)u(k) 1 0 0 0 0 0 0 0

So,


1 − 1

z

 u(k) = 1




z−1
z

 u(k) = 1

u(k) = z

z−1

iii) Decaying Exponential. Let

x(k) = aku(k)

k 0 1 2 3 4 5 6 7

x(k) 1 a a2 a3 a4 a5 a6 a7

a*(1/z)*x 0 a a2 a3 a4 a5 a6 a7

Subtract

(1-a/z)x 1 0 0 0 0 0 0 0

so

(1 − a
z)X = 1

(
z−a

z)X = 1

X = (
z

z−a)

Table of z-Transforms

These let you create a table of z-transforms like we had in the s-domain:

function y(k) Y(z)

delta δ(k) 1

unit step u(k) z

z−1

decaying exponential aku(k) z
z−a

damped sinewave 2b ⋅ ak ⋅ cos (kθ + φ) ⋅


(b∠φ)z

z−(a∠θ)

 + 

(b∠−φ)z

z−(a∠−θ)



Example: Real Poles

Find the step response of

Y = 


0.2z

(z−0.9)(z−0.5)





z

z−1



Use partial fractions

Y = 


0.2z

(z−1)(z−0.9)(z−0.5)

 z = 





4

z−1

 + 

−4.5

z−0.9

 + 

0.5

z−0.5



 z

Y = 




4z

z−1

 + 

−4.5z

z−0.9

 + 

0.5z

z−0.5





Use the table

k >= 0y(k) = 4 − 4.5 ⋅ (0.9)k + 0.5 ⋅ (0.5)k

Example: Complex Poles

Find y(k)

Y =





0.2z


z−0.9∠100 



z−0.9∠−100 






 

z

z−1



Pull out a z:

Y =





0.2z

(z−1)z−0.9∠100 


z−0.9∠−100 






 z

Expand using partial fractions

Y = 




5.355

z−1

 + 

2.98∠153.970

z−0.9∠100


 + 

2.98∠−153.970

z−0.9∠−100




 z

Convert back to time using the table of z-transforms

 k >= 0y(k) = 5.355 + 4.859 ⋅ (0.9)k ⋅ cos (100 ⋅ k − 153.970)

Notes:

s-Plane: Rectangular works best

The real part of s tells you the rate at which the exponential decays
The complex part of s tells you the frequency of oscillations.

z-plane: Polar works best

The amplitude of z tells you the rate at which the signal decays
The angle of z tells you the frequency of oscillation.

In this case,

The signal decays by 10% each sample (0.9)k

The phase changes by 10 degrees each sample

36 samples per cycle

Handout: Assume x(k) = u(k) (unit step). Find y(k)

Y = 


0.2z

(z−0.8)(z−0.6)

X

Sidelight: Time Value of Money

Borrow $100,000 @ 6% interest (0.5% per month).

What are the monthly payments?
This is what business calculators compute
Constant monthly payments starting at month #1 (vs. month #0)

x(k) = loan value at month k

x(k + 1) = 1.005x(k) − p ⋅ u(k − 1) + X(0) ⋅ δ(k)

z-Transform

zX = 1.005X − p
1

z−1

 + X(0)

(z − 1.005)X = −p
1

z−1

 + X(0)

Solve for X

(z − 1.005)X = −p
1

z−1

 + X(0)

X = 


X(0)

z−1.005

 − p

1

(z−1)(z−1.005)



Do partial fractions

X = 


X(0)

z−1.005

 + p




200

z−1

 − 

200

z−1.005





Multiply by z so it's in our table of z-transforms

zX = 


X(0)z

z−1.005

 + p




200z

z−1

 − 

200z

z−1.005





Take the inverse z-transform

zX = 


X(0)z

z−1.005

 + p




200z

z−1

 − 

200z

z−1.005





zx(k) = (1.005k ⋅ X(0) + 200p(1 − 1.005k))u(k)

Divide by z (delay by one)

x(k) = (1.005k−1 ⋅ X(0) + 200p(1 − 1.005k−1))u(k − 1)

After 10 years (k=120 payments), the loan is zero

x(120) = 0 = $181, 034.50 − 162.069p

p = $1117.02

Summary:

LaPlace transforms convert differential equations into algebraic equations in 's'

Makes solving differential equations much easier

z-Transforms convert difference equations into algebraic equations in 'z'

Makes solving difference equations much easier

The same procedures used with LaPlace transforms also work with z-transforms

You just use a slightly different table when converting back to time

