
Unstable Systems and 
Multi-Loop Feedback

ECE 461/661 Controls Systems

Jake Glower - Lecture #28

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Pole-Zero Cancellation:

Pole-Zero cancellation just makes the initial condition small

Example:  Find the step response
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Ignoring the pole at s = -1 doesn't change the results significantly



Unstable Poles

This doesn't work with unstable poles
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The unstable term blows up (you can't ignore it)



Result:

You cannot cancel unstable poles

If you miss by the slightest amount, they'll blow up



Design Problem:  

Design a compensator for the following system: 
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(similar dynamics to a rocket)

that results in 

No error for a step input, and

20% overshoot for a step input

Verify your design with VisSim (or Simulink)



Method #1 ( which won't work) .  
Cancel the pole at s = +1 since it's causing problems.

Add a pole at s = 0 to make the system type-1.

Add a gain of 0.4220 to place the closed-loop poles at s = -0.4031 + j0.8062

K(s) = 0.4220
s−1

s



-6 -5 -4 -3 -2 -1 0 1 2
0

1

2

3

4

s = -0.4 + j0.8



VisSim Result:

Unstable



NASA Result:

Tried many times in the

1950's

Always ended up with an

unstable system



Method #2:  Multi-Loop Feedback.

Force the problem to fit the solution

Add a feedback loop (K1) to stabilize the system

Then worry about meeting the design specs

We know how to design controllers for systems which are open-loop stable
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Design Problem (repeat)

Design a controller for  

G(s) = 
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that results in 

No error for a step input,

20% overshoot for a step input, and

A 2% settling time of 4 seconds.

Verify your design with VisSim.



Step 1:  Stabilize the system

Add a compensator, K1(s), to stabilize the system.

Don't cancel the pole at s = +1:  it's unstable

Cancel the pole at s = -1 instead
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Finding K1(s)
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This results in the closed-loop system being
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Note that this doesn't meet the requirements in any way.  At least it's stable though.
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Step 2:  Add K2(s) to meet the
design specs.
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The system should be type-1

The closed-loop dominant pole should be at s = -1 + j2

To meet this requirement, 

Add a pole at s = 0 to make the system type-1

Cancel the poles at -1 and -2

Add a pole at -a so that -1 + j2 is on the root locus
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To solve for 'a'
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To find 'k'
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Step 3:  Validation (VisSim works)



Note

It doesn't really matter where you place the poles in Step 1:  you're just going to cancel

them in Step 2.  Likewise, these poles were placed on the real axis at { -1, -2, -11 }.  Real

poles are easier to cancel than complex ones when using an op-amp circuit.

The closed-loop system is stable in spite of the open-loop system being unstable.

Unstable open-loop systems are OK to use - as long as your feedback control law is

working.

No unstable poles were canceled.  The system remains stable if you run it out to 100

seconds.



Implementation:
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Handout:  Design a gain compensator, K(s), so that the following system is 

Closed-loop stable, 

With 2% settling time of 5 seconds
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Summary:

You cannot cancel unstable poles

Cancelling the unstable pole doesn't make it go away

It just makes that pole uncontrollable from your input

You can stabilize unstable systems using root locus techniques

Close the feedback loop twice

First time:  stabilize the system

Second time:  Meet the design specs


