
Root Locus for
Systems with Delays

ECE 461/661 Controls Systems

Jake Glower - Lecture #27

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Source of Delays

Delays can result from many situations:

Placing a sensor far from the input
Example: paper mill

Ignored dynamics

fast poles do have some affect on a system

A delay is a way to model the poles you're

ignoring

Example

G(s) =

60,000

(s+5)(s+10)(s+20)(s+30)

G(s) ≈

100

(s+5)(s+10)

Direction

of paper

flow

Rollers

(Input U)
Sensor

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Seconds

2nd-Order System

4th-Order System

Delay

Approximating the delay

G(s) =

60,000

(s+5)(s+10)(s+20)(s+30)

 ≈

100

(s+5)(s+10)

 ⋅ e−sT

Find T to match the phase shift at s = j1

 seconds(e−sT
)s=j1

= 1∠ − 4.77160 ⇒ T = 0.0833

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Seconds

4th-Order System

2nd-Order System + Delay

Pade Approximation:

To use root locus techniques, we need the poles and zeros:

Delay(T) = e−sT ≈ k
z(s)

p(s)

Rewrite as

e−sT =

e
−

sT
2

e
sT
2

Expand as a Taylor's series

e−sT =

1−
T

2

 s+

T2

8

 s2−

T3

48

 s3+

T4

384

 s4+...

1+
T

2

 s+

T2

8

 s2+

T3

48

 s3+

T4

384

 s4+...

The more terms you add, the better the approximation.

Example: Find 'k' for 20% overshoot

Y =

100

s(s+5)(s+10)

 ⋅ e−0.5s

U

Solution #1: Use a Pade approximation with 2 terms: (Matlab function)

[num, den] = pade(0.5, 2);

Delay = tf(num, den);

e−0.5s ≈

s2−12s+48

s2+12s+48

 =

(s−6+j3.464)(s−6−j3.464)

(s+6+j3.464)(s+6−j3.464)

In Matlab:
G = zpk([],[0,-5,-10],100);

[num,den] = pade(0.5, 2);

Delay = tf(num,den);

k = logspace(-2,2,1000)';

R = rlocus(G*Delay,k);

Two solutions:

s = -0.6646 + j1.3293

k = 0.4484

dominant pole

s = -4.5751 + j9.1502

k = 4.3299

stray solution

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-j10

-j9

-j8

-j7

-j6

-j5

-j4

-j3

-j2

-j

0

j

j2

j3

j4

j5

j6

j7

j8

j9

j10

Solution #1

Solution #2

10% Overshoot

Checking in Matlab

Wobble for 0 < t < 1/2 second due to Pade

approximation:

G = zpk([],[0,-5,-10],100);

[num,den] = pade(0.5, 2);

Delay = tf(num,den)

 s^2 - 12 s + 48

 s^2 + 12 s + 48

k = 0.4484;

Gcl = G*Delay*k / (1 + G*Delay*k);

Gcl = minreal(Gcl);

t = [0:0.01:10]';

y = step(Gcl,t);

plot(t,y);

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

Problem: 4th-order Pade Approximation

e−0.5s ≈

(s−8.42±j10.63)(s−11.58±j3.47)

(s+8.42±j10.63)(s+11.58±j3.47)

Root Locus:

[num,den] = pade(0.5, 4);

Delay = tf(num,den)

k = logspace(-2,2,1000)';

G = zpk([],[0,-5,-10],100)

rlocus(G*Delay,k);

-15 -10 -5 0 5 10 15
-j15

-j10

-j5

0

j5

j10

j15

Zooming in on the dominant pole:

s = -0.6666 + j1.3333

k = 0.4566

Option #2: Numerical Solution

Any point on the root locus satisfies

∠(GK) = 1800

Search along the damping line until the angles add up 180 degrees

For 20% overshoot

angle
100⋅e−0.5s

s(s+5)(s+10)

s=α(−1+j2)

= 1800

s = -1 + j*2;
G = zpk([],[0,-5,-10],100);

evalfr(G,s) * exp(-0.5*s)

ans = -1.5006 + 0.9728i

s = s * 0.9;

evalfr(G,s) * exp(-0.5*s)

ans = -1.7267 + 0.7338i

This method doesn't have a name and might not be taught anywhere else other than

NDSU.

It isn't really root locus design, since you're not drawing the root locus

It sort of is root locus design, since you're finding the point on the root locus which

intersects the desired damping line. That's the only point you care about anyway, so you

don't need (and won't use) the rest of the root loucs.

It's a lot easier and more accurate since you using to model a delay, not ane−sT

approximation. (Typing in four poles and four zeros for the 4th-order model was a bit of

a pain. Typing in e-sT was easy.)

In Matlab, iterate until the angle of G * delay is zero. Taking your initial guess as

s = -0.5 + j

then iterating by scaling s each step results in

s = 0.5 * (-1 + j*2);

evalfr(G,s) * exp(-s*T)

 - 2.5039068 - 0.7297865i

s = s * 1.1; 10% larger

evalfr(G,s) * exp(-s*T)

 - 2.4062416 - 0.4851018i good: complex portion is getting smaller.

s = s * 1.1; add another 10%

evalfr(G,s) * exp(-s*T)

 - 2.303687 - 0.2437231i better: complex portion is getting smaller

s = s * 1.1; add another 10%

evalfr(G,s) * exp(-s*T)

 - 2.1923504 - 0.0045661i close: complex portion is almost zero

(time passes)

s = 0.666717 * (-1 +j*2)

 - 0.666717 + 1.333434i

evalfr(G,s) * exp(-s*T)

 - 2.1901017 + 0.0000002i close enough

If you use this method, the result is the exact solution

Method s k

2nd-Order Pade -0.6646 + j1.3293 0.4484

4th-Order Pade -0.6666 + j1.3333 0.4566

exp(-sT) (exact) -0.6667 + j1.3334 0.4566

Positives

Works

Doesn't need Pade

approximations

Exact solution

Negatives

Not a built in

function in

Matlab

Handout: Design a gain compensator, K(s), so that the following system with a

100ms delay has

G(s) =

100

(s+0.3)(s+2)(s+5)(s+10)

 e−0.2s

to meet the following requirements:

No error for a step input

2% settling time = 4 seconds

Damping ratio = 0.707 (45 degrees)

0-1-2-3-4-5-6-7-8-9-10-11
0

j

j2

j3

Summary:

Delays are the bane of controls systems

Destabilizes the closed-loop system

To design K(s) using root locus techniques when there's a delay...

Use a Pade approximation for the delay
Converts a delay to poles & zeros

Then analyze using root locus as per usual

Or, use numerical methods
You really only care about one point on the root locus (the design point)

G(s)*K(s) = -1 at any point on the root locus

