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Stability
If you perturb a system, it returns to its original position

Unstable system are pretty much useless:  they break

Stable Unstable

Stability:  If perturbed, it will return to its original position



Feedback

You can stabilize unstable systems using feedback

Examples of unstable systems:

Standing:  if you pass out, you fall down.

Bicycles:  takes time (and skinned knees) to master

Rockets:  balance on a ball of flame

Economies:

- Good times:  People buy more, companies sell more and hire more

- Bad times:  Peoble buy less, companies lay off employees, people

buy even less

- Boom / bust cycles date back to the Roman Empire

- The Federal Reserve's job is to adjust the money supply and

interest rates to keep growth at a steady, sustainable level



Problem with Feedback

Too much feedback can turn a stable system into an ustable one

Driving a car:  when learning to drive you...

- Jerk the steering wheel, sending the car into the curb, then

- You jerk the steering wheel, sending the car into the other curb

Pilot-Induced Oscillations

- A Cessna is open-loop stable:  if you take your hands off the controls it flies itself.

- When landing, sometimes a pilot will over-correct, sending the plane towards the grond

- Then over-correct, sending the plane into the sky

- Each oscillation gets worse and worse

- To fix, take your hands off the controls and let the plane fly itself.



Example: Too Much Feedback

G(s) is open-loop stable

Heat equation

3-stage RC filter

Y = 


100

(s+1)(s+2)(s+3)


U

Closed-loop system is unstable:

Y = 


G

1+G

R = 


100

(s+1)(s+2)(s+3)+100

R

Y = 


100

(s−0.3567+j3.9575)(s−0.3567−j3.9575)(s+6.7134)


R

G(s)
_

R YU



Problem:

How do you determine whether a system is stable?

Matlab:  All roots must be negative definite

Routh Table:  Also works

How do you determine the range of feedback gains that result in a stable system?

Routh Table

The latter question is harder but useful:

Feedback control systems often have knobs you can adjust.  It would be nice if you could

dummy-proof such a system and make sure the operator doesn't make the system go

unsable.

Sometimes, a system just isn't stabizable.  It would be nice to know this before spending

hours trying to stabilize it.



Routh Table

Determine if a given polynomial is negative definite (i.e. stable)

ansn + an−1sn−1 + an−2sn−2 + ... + a1s + a0 = 0

Row 1 & 2:  Every other term starting with an

an an-2 an-4 an-6 ...

an-1 an-3 an-5 an-7 ...

Row 3+:  Generate from prior two rows

Repeat until all entries are zero

Previous
two rows:

a b c d ...

e f g h ...

New Row
−

a b

e f

e

−
a c

e g

e

−
a d

e h

e

etc.



Routh Criteria:

Number of unstable poles = Number of sign flips in column #1

For a system to be stable, there can be no sign flips in column #1

The range of gains that produce a stable system are the range that results in no sign flips

in column #1



Example:  Determine if this polynomial is stable using a Routh table

 (s + 1)(s + 2)(s + 3)(s + 4) = s4 + 10s3 + 35s2 + 50s + 24

1 35 24 0

10 50 0 0

−
1 35

10 50

10
= 30

−
1 24

10 0

10
= 24

−
1 0

10 0

10
= 0

0

−
10 50

30 24

30
= 42

−
10 0

30 0

30
= 0

−
10 0

30 0

30
= 0

−
30 24

42 0

42
= 24

−
30 0

42 0

42
= 0

−
42 0

24 0

24
= 0

−
42 0

24 0

24
= 0

There are no sign flips.  Hence, this polynomial is stable.  (The system is stable).



Example 2:  Determine the range of K for stability: Y = 


K

(s+1)(s+2)(s+3)+K

R

Multply out the denominator

(s + 1)(s + 2)(s + 3) + K = s3 + 6s2 + 11s + 6 + K

Form a Routh Table  you can scale a row by

a positive constant

No sign flips in column #1

Result:  -6 < K < 60

Note:  If you plug in the endpoints, you get

roots on the jw axis

K = -6:

roots = {0, -3+j1.4142, -3-j1.4142}

K = +60:

roots = {-6, +j3.3166, -j3.3166}



Example 3:  
GK

1+GK

 =






Ds2+Ps+I

s(s+1)(s+2)(s+3)+Ds2+Ps+I






Multiply out the denominator:

s(s + 1)(s + 2)(s + 3) + (Ds2 + Ps + I) = 0

Build a Routh Table

1 11+D I Routh Criteria

6 6+P 0

10 + D −
P

6
I 0 10 + D −

P

6
> 0

60+6D+P+10P+DP+
P2

6
−6I

10+D+
P

6

0 0 60 + 6D + P + 10P + DP +
P2

6
− 6I > 0

I 0 0 I > 0



Handout:  Fill in a Routh table for the following polynomial

Determine the range of k for stability

s4 + 14s3 + 59s2 + 46s + 2k − 120 = 0



Sidelight:  When is a mass-spring system stable?

ms2 + bs + k = 0

m k

b 0

k 0

0 0

There are no sign flips if {m, b. k} are

all positive, or

all negative

A world with negative mass, friction, and springs would also work.



Summary

Routh criteria is one way of telling if a polynomial is negative definite

i.e. the system is stable

It's useful for finding the range of gains that result in a stable system

dummy protection

don't let the operator go outside this range

It just stay stable or unstable

We need a different tool if you care about a 'good' response


