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& The Wave Equation
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Jake Glower - Lecture #15

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Mass & Spring Systems

Each mass has two energy states:  Differential equation is of order 2N

Kinetic Energy

Potential Energy

Stategy:  (Electrical engineering approach to mass / spring systems)

Replace the mass, spring, and friction terms with their LaPlace admittance,

Redraw the system as an electric circuit, and

Write the voltage node equations.



LaPlace Admittances
Force = Current

Position = Voltage

Mechanical World Electrical World

Force = Mass * Acceleration Current = Admittance * Voltage

Symbol F = ... LaPlace

Addmittance

Mass f = m x'' s2 m

Spring f = k x k

Friction f = B x'

f = fv x'

sB

s fv



Example:  Mass Spring System
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Step 1:  Draw the circuit equivalent:
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Step 2:  Write the voltage node equations

(K1 + B1s + M1s2 + K2 + B3s)X1 − (K2 + B3s)X2 = F

(M2s2 + B2s + K3 + K2 + B3s)X2 − (K2 + B3s)X1 = 0

X1 X2

F K1

s B1

M1 s²

B3 s

K2

M2 s²

B2 s

K3



Step 3:  Solve

hint:  use State-Space

Solve for the highest derivative:

M1s2X1 = −(K1 + K2 + B1s + B3s)X1 + (K2 + B3s)X2 + F

M2s2X2 = −(B2s + K3 + K2 + B3s)X2 + (K2 + B3s)X1

Place in matrix form
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Y = X2 =  0 1 0 0 
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Note that

You have 2N states, where N is the number of masses.  Each mass has two energy states

(kinetic and potential energy) giving your 2N state variables.

The first N rows are [ 0 : I ] where I is the identity matrix.  This tells MATLAB that the

states are position and velocity.

The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the

heat equation which always has real poles.



Finding the Transfer Function to X2

Assume M = 1kg, B = 2 Ns/m, K =10 N/m
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A = [0,0,1,0 ; 0,0,0,1 ; -20,10,-4,2 ; 10,-20,2,-4];

B = [0;0;1;0];

C = [0,1,0,0];

D = 0;

G = ss(A,B,C,D)

zpk(G)

 

            2 (s+5)

-------------------------------

(s^2 + 2s + 10) (s^2 + 6s + 30)



2nd-Order Approximation

Dominant pole:  s = -1 +/- j3

DC gain = 0.03333

DC = evalfr(G,0)

    0.0333333  

So

X2 ≈ 
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0.3333

(s+1±j3)


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Wave Equation:  (fun stuff)

N masses connected by springs:

Coupled 2nd-order differential equations
d2xi

dt2
= f(xi−1, xi, xi+1)

"Wave Equation"
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Cascaded Mass-Spring Systems creates the Wave equation



Dynamics:

Node #2

Ms2x2 = Kx1 − 2Kx2 + Kx3

s2x2 = 
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M
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Other nodes are similar

With 30 nodes, you get a 60th order differential equation

Each node has two energy states
- Potential Energy

- Kinetic Energy



30-Node Model

K/M = 50

Friction to ground = 0.01

Snap V0

Produces a traveling wave

t = 2 seconds.  Wave traveling to the right



Reflections:

Free endpoint causes a + reflection

t = 5 seconds.  Wave hits the right endpoint

t = 7 seconds.  Reflection is now traveling to the left



Really hard system to control

60th order system

All 60 poles are dominant
- All on the jw axis

- Scattered from -j14.5 to +j14.5

2nd-Order approximations don't work well

for this system
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Wave.m
N = 30;   % number of nodes

V = zeros(N,1);

dV = zeros(N,1);

t = 0;

dt = 0.01;

while(t < 100)

   if (t < 2) V0 = 100 * ( ( sin(0.5*pi*t) )^2 ); 

      else V0 = 0;

      end

   ddV(1) = 50*V0 - 100*V(1) + 50*V(2) - 0.01*dV(1);

   for i=2:N-1

      ddV(i) = 50*V(i-1) - 100*V(i) + 50*V(i+1) - 0.01*dV(i);

      end

   ddV(N) = 50*V(N-1) - 50*V(N) - 0.01*dV(N);

   for i=1:N

      dV(i) = dV(i) + ddV(i)*dt;



      V(i) =  V(i) +  dV(i)*dt;

      end

   t = t + dt;

 

   plot([0:N],[V0;V],'.-');

   ylim([-100,150]);

   pause(0.01);

   end


