
Mass & Spring Systems

& The Wave Equation
ECE 461/661 Controls Systems

Jake Glower - Lecture #15

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Mass & Spring Systems

Each mass has two energy states: Differential equation is of order 2N

Kinetic Energy

Potential Energy

Stategy: (Electrical engineering approach to mass / spring systems)

Replace the mass, spring, and friction terms with their LaPlace admittance,

Redraw the system as an electric circuit, and

Write the voltage node equations.

LaPlace Admittances
Force = Current

Position = Voltage

Mechanical World Electrical World

Force = Mass * Acceleration Current = Admittance * Voltage

Symbol F = ... LaPlace

Addmittance

Mass f = m x'' s2 m

Spring f = k x k

Friction f = B x'

f = fv x'

sB

s fv

Example: Mass Spring System

K1

f

m1

B3

K2

K3

m2

B1 B2x1 x2

Step 1: Draw the circuit equivalent:

X1 X2

F K1

s B1

M1 s²

B3 s

K2

M2 s²

B2 s

K3

Step 2: Write the voltage node equations

(K1 + B1s + M1s2 + K2 + B3s)X1 − (K2 + B3s)X2 = F

(M2s2 + B2s + K3 + K2 + B3s)X2 − (K2 + B3s)X1 = 0

X1 X2

F K1

s B1

M1 s²

B3 s

K2

M2 s²

B2 s

K3

Step 3: Solve

hint: use State-Space

Solve for the highest derivative:

M1s2X1 = −(K1 + K2 + B1s + B3s)X1 + (K2 + B3s)X2 + F

M2s2X2 = −(B2s + K3 + K2 + B3s)X2 + (K2 + B3s)X1

Place in matrix form

s















X1

X2

. ..

sX1

sX2














=



















0 0
.
.. 1 0

0 0
.
.. 0 1

.




−(K1+K2)

M1







K2

M1




.

..



−(B1+B3)

M1







B3

M1







K2

M2







−(K2+K3)

M2




.

..



B3

M2







−(B2+B3)

M2




































X1

X2

. ..

sX1

sX2














+


















0

0
. ..




1

M1




0

















F

Y = X2 =  0 1 0 0 













X1

X2

sX1

sX2













+ [0]F

Note that

You have 2N states, where N is the number of masses. Each mass has two energy states

(kinetic and potential energy) giving your 2N state variables.

The first N rows are [0 : I] where I is the identity matrix. This tells MATLAB that the

states are position and velocity.

The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the

heat equation which always has real poles.

Finding the Transfer Function to X2

Assume M = 1kg, B = 2 Ns/m, K =10 N/m

s













X1

X2

sX1

sX2













=













0 0 1 0

0 0 0 1

−20 10 −4 2

10 −20 2 −4

























X1

X2

sX1

sX2













+













0

0

1

0












F

A = [0,0,1,0 ; 0,0,0,1 ; -20,10,-4,2 ; 10,-20,2,-4];

B = [0;0;1;0];

C = [0,1,0,0];

D = 0;

G = ss(A,B,C,D)

zpk(G)

 2 (s+5)

(s^2 + 2s + 10) (s^2 + 6s + 30)

2nd-Order Approximation

Dominant pole: s = -1 +/- j3

DC gain = 0.03333

DC = evalfr(G,0)

 0.0333333

So

X2 ≈ 


0.3333

(s+1±j3)


F

Wave Equation: (fun stuff)

N masses connected by springs:

Coupled 2nd-order differential equations
d2xi

dt2
= f(xi−1, xi, xi+1)

"Wave Equation"

M

K

X1U

M

K

X2

M

K

X3

M

K

X4

M

K

X5

Cascaded Mass-Spring Systems creates the Wave equation

Dynamics:

Node #2

Ms2x2 = Kx1 − 2Kx2 + Kx3

s2x2 = 


K

M

 x1 − 

2K

M

 x2 + 

K

M

 x3

Other nodes are similar

With 30 nodes, you get a 60th order differential equation

Each node has two energy states
- Potential Energy

- Kinetic Energy

30-Node Model

K/M = 50

Friction to ground = 0.01

Snap V0

Produces a traveling wave

t = 2 seconds. Wave traveling to the right

Reflections:

Free endpoint causes a + reflection

t = 5 seconds. Wave hits the right endpoint

t = 7 seconds. Reflection is now traveling to the left

Really hard system to control

60th order system

All 60 poles are dominant
- All on the jw axis

- Scattered from -j14.5 to +j14.5

2nd-Order approximations don't work well

for this system

-10 -5 0 5
-j15

-j10

-j5

0

j5

j10

j15

Pole Locations

Wave.m
N = 30; % number of nodes

V = zeros(N,1);

dV = zeros(N,1);

t = 0;

dt = 0.01;

while(t < 100)

 if (t < 2) V0 = 100 * ((sin(0.5*pi*t))^2);

 else V0 = 0;

 end

 ddV(1) = 50*V0 - 100*V(1) + 50*V(2) - 0.01*dV(1);

 for i=2:N-1

 ddV(i) = 50*V(i-1) - 100*V(i) + 50*V(i+1) - 0.01*dV(i);

 end

 ddV(N) = 50*V(N-1) - 50*V(N) - 0.01*dV(N);

 for i=1:N

 dV(i) = dV(i) + ddV(i)*dt;

 V(i) = V(i) + dV(i)*dt;

 end

 t = t + dt;

 plot([0:N],[V0;V],'.-');

 ylim([-100,150]);

 pause(0.01);

 end

