
First and Second Order
Approximations
ECE 461/661 Controls Systems

Jake Glower - Lecture #11

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions



Motivation:
Each pole is an energy state

If you have 10 energy states, you get a 10th order transfer function

Example: 10-stage RC filter with RC = 1

Y = 


1

s10+19s9+153s8+680s7+1820s6+3003s5+3003s4+1716s3+495s2+55s+1


X

We need a model which is

Simpler, and

Still fairly accurate

- Similar step response



Dominant Pole
One or two poles tend to dominate the response of a system

If you

Match the dominant pole, and

Match the DC gain

You get a 

Simpler model (1 or 2 poles),

Which is fairly accurate (same dominant pole)



Definitions:

Dominant Pole(s):  

The pole which dominates the step response of a system

The pole which is closest to s=0 (usually)

Transfer Function:  G(s)

The differential equation relating the input (X) and the output (Y)

DC Gain:

The gain of G(s) at s=0

2% Settling Time:

The time it takes the transients to decay to 2% of their initial value

Overshoot:

The maximum of a step response divided by it's steady-state value.

Damping Ratio

Cosine of the angle of the dominant pole



Which Pole is Dominant?

Example:  Find the step response of

G(s) = 


2000

(s+1)(s+10)(s+100)



Y(s) = 


2000

(s+1)(s+10)(s+100)





1
s



Y(s) = 


2
s

 + 

−2.222

s+1

 + 

0.2469

s+10

 + 

0.0022

s+100



y(t) = (2 − 2.222e−t + 0.2469e−10t − 0.0022e−100t)u(t)

Note that

The DC gain is 2 (first term)

The second term dominates the transient response

- Larger than the other terms

- Lasts longer than the other terms



Real Dominant Pole:  G(s) = 


2000

(s+1)(s+10)(s+100)

 ≈ 


2

s+1



Keep the dominant pole  (s = -1)

Match the DC gain ( 2 )
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Complex Dominant Poles:  

G(s) = 


2,000,000

(s+1+j2)(s+1−j2)(s+10)(s+50+j200)(s+50−j200)

 ≈ 


4.70588

(s+1+j2)(s+1−j2)



Keep the poles at -1 +/- j2

Match the DC gain
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Time Scaling

In this class, the dominant pole is usually close to 1.000

Good numerical properties

This implies time scaling

The x-axis could be milliseconds rather than seconds

LaPlace transforms assume all functions are of the form

y = exp (st)

If you change time from seconds to milliseconds

τ = 1000t

the pole becomes 1000x smaller

y = exp 
s

1000
1000t = exp 

s

1000
τ



First-Order Approximations:
Describe the step response by inspection

Look at the dominant pole and the DC gain

Generic 1st-order system:  Two degrees of freedom

G(s) = 


a

s+b



DC Gain:  The DC gain is the gain at s = 0:

DC = 


a

b



2% Settling Time:

 e−bt = 0.02

 t = 4

b
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Example:  10th Order System

Sketch the step response of:

Y = 


1

s10+19s9+153s8+680s7+1820s6+3003s5+3003s4+1716s3+495s2+55s+1


X

Solution:  Find the DC gain
DC = evalfr(G10,0)

    1.0000

DC = 


1

s10+19s9+153s8+680s7+1820s6+3003s5+3003s4+1716s3+495s2+55s+1




s=0
= 1

Find the dominant pole & the 2% settling time:
zpk(G10)

 
                                                 1

---------------------------------------------------------------------------------------------------

(s+3.911) (s+3.652) (s+3.247) (s+2.731) (s+2.149) (s+1.555) (s+1) (s+0.5339) (s+0.1981) (s+0.02234)

 secondst2% = 4

0.02234
= 179.05



Checking in Matlab:
>> t = [0:0.1:300]';

>> y10 = step(G10,t);

>> plot(t,y10);
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As expected, the 10th-Order RC Filter has a DC gain of one and a 2% settling time of about 179 seconds



Going Backwards:

Give the step response, find G(s)

The DC gain is 1.00

The 2% settling time is 178 seconds (approximately).

This tells you that the dominant pole is

b ≈ 4

178
= 0.0225

G(s) ≈ 


0.0225

s+0.0225


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Second-Order Approximations:

G(s) = 


ac

s2+bs+c


 = 


aωn

2

(s+σ+jωd)(s+σ−jωd)



The real part of the dominant pole determines the 2% settling time

The complex part of the pole determines the frequency of oscillation

Example:  G(s) = 


200

(s+2+j20)(s+2−j20)


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Second Order Approximations (take 2)

G(s) = 


aωn
2

(s+ωn∠θ)(s+ωn∠−θ)

 = 


aωn

2

s2+2ζωns+ωn
2




The angle tells you the % Overshoot

 = damping ratioζ = cos θ

OS = exp





−πζ

1−ζ2






zeta Overshoot

1.0 0.00%

0.9 0.15%

0.8 1.52%

0.7 4.60%

0.6 9.48%

0.5 16.30%

0.4 25.38%

0.3 37.23%

0.2 52.66%

0.1 72.92%

0.0 100%
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Example:  Determine the step response of the following system by inspection:

G(s) = 


2000

(s+1+j2)(s+1−j2)(s+10)(s+50+j200)(s+50−j200)



Solution:  The DC gain is 0.94

The dominant pole is at -1 + j2

The 2% settling time will be 4 seconds   ( 4/1 )

The frequency of oscillation will be 2 rad/sec

The overshoot will be 20.79%

1 + j2 = 2.23∠63.40

ζ = cos (63.40) = 0.447

OS = exp





−πζ

1−ζ2




 = 20.79%



The actual step response is:
G = zpk([],[-1+j*2,-1-j*2,-10,-50+j*200,-50-j*200],2e6);

t = [0:0.001:6]';

y = step(G,t);

DC = evalfr(G,0)

DC =  0.9412

plot(t,y,'b',[0,6],[1,1]*DC,'c--')

OS = max(y) / DC

OS =  1.2021

 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

20% Overshoot

DC = 0.94



Finding G(s) from the step response
DC gain = 0.94

2% Settling time = 2 seconds

20% overshoot

ζ = 0.4536

θ = arccos (ζ) = 63.020

s = −1 + j1.96

G(s) ≈ 


a

(s+1+j1.96)(s+1−j1.96)



G(s) ≈ 


4.55

(s+1+j1.96)(s+1−j1.96)



note: you only find the dominant

pole
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Summary

Usually, a transfer function has one or two poles that dominate the step response

One:  a real pole

Two: a complex conjugate pair of poles

By looking at the dominant pole(s), you can pretty much tell how the system will

behave.

The other fast poles don't really matter that much

When you specify how the system should behave, you're actually specifying where

the dominant pole(s) belong

Again, the other fast poles don't really matter that much 


