
PID in the z-Domain

Objectives:

Design a PID compensator in the z-domain.

Discussion:

The purpose of a PID compensator is to remove the steady-state error for a step input (I) and speed up the system

(PD). For discrete-time systems, the D stands for 'delay' not 'derivative' however.

K(z) = P + I
z

z−1

 + D

1
z



Example: Design a P, PI, and PID compensator for G(s) that results in 20% overshoot in the step response.

Assume a sampling rate of 50ms.

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)




First, find G(z). Assume a sampling rate of 0.05 second.

Convert the poles in the s-plane to the z-plane:

s = -2 z = 0.9048

s = -4 z = 0.8187

s = -6 z = 0.7408

s = -8 z = 0.6703

so

G(z) ≈ 


kz2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Matching the DC gain:

G(s = 0) = 2.6042

To make

G(z=1) = 2.6042

k = 0.003841

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




NDSU PID in the z-Domain ECE 461/661

1 July 26, 2020

To get the delay right, you can play with the numerator. A delay of two (z2) in the numerator worked best.

P Compensation: K(z) = P = k.

Find the feedback gain, k, that results in 20% overshoot in the step response.

There are two ways to do this:

You can analyze the system in the z-domain

You can analyze the system in a hybrid domain (s and z) and avoid having to convert G(s) to G(z).

Method #1: Analyze the system in the z-plane.

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Sketch the root locus and find the point which intersects the damping ratio of 0.4559:

G = zpk([0,0],[0.9048,0.8187,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = rlocus(G,k);

% add in the damping line

s = [0:0.01:10]' * (-1+j*2);
T = 0.05;
z = exp(s*T);
plot(real(z),imag(z),'r');

NDSU PID in the z-Domain ECE 461/661

2 July 26, 2020

Root Locus of G(z) with K(z) = k

This gives

z = 0.9224 + j0.1289

and

G(z) = -2.4547k = -1

k = 0.4047

Method #2: Model the sample and hold with a 1/2 sample delay:

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 (e−0.025s

)

Search along the damping ratio of 0.4559

s = α∠117.12290

Iterate by adjusting until the angle of G(s) add up to 180 degrees. This is (solved numerically):α

s = -1.3887 + j2.7111

This corresponds to the point in the z-plane (from)z = esT

z = 0.9244 + j0.1261

At any point on the root locus, GK = -1

G(s) = -2.5892

so

k = 0.3862

NDSU PID in the z-Domain ECE 461/661

3 July 26, 2020

Note that the resulting pole location in the z-plane and the resulting gain, k, is almost what you got with the first

method. The second method is a little more accurate since it doesn't depend upon any s to z conversions.

5b) Verify your design in VisSim.

Step Resonse with Proportional Control

Note that there is steady-state error. This is expected since this is a type-0 system.

NDSU PID in the z-Domain ECE 461/661

4 July 26, 2020

PI Compensation: K(z) = k
z−a

z−1



To make the steady-state error zero, add a pole at s = 0 (z = 1). Since you're adding a pole, you can also add a

zero for free. This results in a PI compensator. Designing it for

T = 0.05

20% overshoot

is as follows:

Method #1: Design in the z-plane.

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Make this a type 1 system and cancel the slowest stable pole

K(z) = k
z−0.9048

z−1



Sketch the resulting root locus:

G = zpk([0,0],[1,0.8187,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = rlocus(G,k,0.4559);
// damping lines from before
plot(real(z),imag(z),'r');

Root Locus with a PI Compensator

Find the point which intersects the damping ratio of 0.4559:

z = 0.9522 + j0.0840

NDSU PID in the z-Domain ECE 461/661

5 July 26, 2020

This gives

G(z) = -3.4289

k = 0.2908

K(z) = 0.2908
z−0.9048

z−1



Method #2: Model the sample and hold as a 1/2 sample delay:

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 (e−0.025s

)

Add K(z) to cancel the pole at s=-2 and add a pole at s=0:

K(z) = k
z−0.9048

z−1



Search in the s (and corresponding z) plane along the damping ratio of 0.4559 until the angles add up to 180

degrees:

s = 0.8734 + j1.7050

z = 0.9538 + j0.0815

At any point on the root locus, GK = -1

GK = -3.6004

k = 0.2777

so

K(z) = 0.2777
z−0.9048

z−1



Verify your design in VisSim.

NDSU PID in the z-Domain ECE 461/661

6 July 26, 2020

Note again that the two methods give almost the same result. The latter method is a little more accurate,

however, since it avoids the G(s) to G(z) conversion and it accounts for the 1/2 sample delay resulting from the

sample and hold.

The difference between an I and PI compensator is

You add a zero with a PI compensator, which allows you to cancel a pole and speed up the system, and

The initial 'guess' for U isn't zero with a PI compensator. This speeds up the system as well.

NDSU PID in the z-Domain ECE 461/661

7 July 26, 2020

PID Compensation: K(z) = k
(z−a)(z−b)

z(z−1)




Design a PID compensator that results in 20% overshoot in the step response.

Method #1: Convert to the z-plane

G(z) ≈ 


0.003841z2

(z−0.9048)(z−0.8187)(z−0.7408)(z−0.6703)




Cancel the two slowest poles. Replace them with a pole at z = +1 (to make it a type-1 system) and z pole at z=0

(to make it causal).

K(z) = k
(z−0.9048)(s−0.8187)

z(z−1)




Sketch the resulting root locus:

G = zpk([0,0],[1,0,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = zlocus(G,k,0.4559);
// add damping line from before
plot(real(z),imag(z);

Root Locus with a PID compensator

Find the point on the root locus which intersects the damping ratio of 0.4559 curve:

z = 0.9164 + j0.1373

At this point

GK = -0.3524k = -1

NDSU PID in the z-Domain ECE 461/661

8 July 26, 2020

k = 2.8381

and

K(z) = 2.8381
(z−0.9048)(s−0.8187)

z(z−1)




Method #2: Model the sample and hold as a 1/2 sample delay

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)


 (e−0.025s

)

Add a compensator, K(z), to cancel the slowest stable poles (or their corresponding spot in the z-plane)

K(z) = k
(z−0.9048)(s−0.8187)

z(z−1)




Search along the damping ratio of 0.4559 until the angle of GK is 180 degrees

s = -1.4422 + j2.8155

z = 0.9212 + j0.1305

At this point, GK = -1

GK = -0.3824k = -1

k = 2.6153

so

K(z) = 2.6153
(z−0.9048)(s−0.8187)

z(z−1)




7b) Verify your design in VisSim or MATLAB.

NDSU PID in the z-Domain ECE 461/661

9 July 26, 2020

Digital PID Compensator for G(s)

Note with a PID compensator

You now have two zeros to use to cancel two poles

This allows you to speed up the system significantly, but

The initial input, U, is much larger. It starts out at 2.6153 (off the graph).

Part of the reason for the large spike at t=0 is the sampling rate is too small. The 2% settling time is about 3

seconds. With T = 0.05, this gives the controllers 60 samples to figure out the input - which is more than you

really need. If you reduce this to 15 samples, meaning

T = 0.2

you get

G(s) = 


1000

(s+2)(s+4)(s+6)(s+8)




K(z) = k
(z−0.6703)(z−0.4493)

z(z−1)




Searching along the line s = -a + ja until the angles of

NDSU PID in the z-Domain ECE 461/661

10 July 26, 2020

angle(G(s) ⋅ K(z) ⋅ e−sT/2) = 1800

results in

s = -1.0747 + j 2.1494

z = 0.7332 + j 0.3362

k = 0.6893

and

K(z) = 0.6893
(z−0.6703)(z−0.4493)

z(z−1)




Step Resonse of a PID Compensator with T = 0.2 seconds

This is about the same response as we had before, only with

A much more reasonable input at t = 0 (0.689 vs. 2.615)

A much slower sampling rate (200ms vs 50ms)

Faster sampling rates are not always good. They can actually cause problems.

NDSU PID in the z-Domain ECE 461/661

11 July 26, 2020

