
Z Transform

Introduction:

Anything you can do in software you can do in hardware, and visa versa.

So far, we have been designing feedback controllers, K(s), in the LaPlace domain and then implementing

them with op-amp circuits. You could also implement this compensator in software, using a
microcontroller as follows:

R E
K(z) G(z)

G(s)
R

t=kT

A/D K(z) D/A

Actual Feedback Control System

The world as seen by the microcontroller

YUE

YU

UE

Here, the microcontroller

Samples the error every T seconds
The sampled signal is sent through an analog to digital (A/D) converter

A program on the microcontroller computes the output (software), and then
The output of the microcontroller is sent to a digital to analog (D/A) converter, producing u(t)

Using a microcontroller has several advantages:

Code that ran yesterday should also run today.
DC offsetts don't exist in software. Zero plus zero is zero.

If you want a more complex controller, you just add lines of code.
If you want to change the controller, you just download a new program.

The problem with using a microcontroller, however, is that LaPlace transforms don't work well when
dealing with coding. For example, a typical control law, K() will look like the following:

NDSU Z Transform ECE 461/661

1 July 25, 2020

while(1) {

 k = k + 1; // k = iteration number

 x1 = x0; // x(k-1)

 x0 = A2D_Read(0); // read in x(k) from the A/D

 y1 = y0; // y(k-1)

 y0 = y1 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

Note that this program implements a difference equation: the value of y at iteration k is equal to

y(k) = y(k − 1) + 0.2(x(k) − 0.9x(k − 1))

This is typical of any program: the value of the variables at any time are a function of the previous
values. The reason we don't use LaPlace transforms for coding is that LaPlace transforms are designed

for solving differential equations. To solve a difference equation, we need a different tool: that tool is
the z-transform.

Recall that the reason we use LaPlace transforms when solving differential equations is they turn
differential equations into algebraic equations in 's', and algebra is easier than calculus. The basic
assumption behind LaPlace transforms is that all functions are in the form of

y = est

This results in differentiation becoming multiplication by 's'

dy

dt
= s ⋅ est = sY

Here 'sY' means "the derivative of Y". This allows us to convert differential equations into algebraic
equations in s. For example, the transfer function

Y = 


8s+3

s2+7s+12


X

means the differential equation which describes the relationship between X and Y is

(s2 + 7s + 12)Y = (8s + 3)X

or

.
d2y

dt2
+ 7

dy

dt
+ 12y = 8dx

dt
+ 3x

NDSU Z Transform ECE 461/661

2 July 25, 2020

In contrast, the z-transform converts difference equations in to algebraic equations in 'z'. The basic

assumption behind the z-transform is that all functions are in the form of

y = zk

where time is equal to kT and T is the sampling rate. (Think of it as a microcontroller with an interrupt
being called every T seconds. 'k' is how many times the interrupt has been called.) With this
assumption, the next value of y will be

y(k + 1) = zk+1 = z ⋅ zk = z ⋅ y(k)

Here, 'zY' means "the next value of Y." This in turn converts difference equations into algebraic

equations in z.

Implementing K(z) in Software

In the s-domain, sY means "the derivative of Y"

In the z-domain, zY means "the next value of Y" or "y(k+1)"

If you have a filter

Y = K(z)X

or

Y = 


a2z2+a1z+a0

z3+b2z2+b1z+b0


X

with a sampling rate of T seconds, you can implement this filter in code as follows.

i) Cross multiply:

(z3 + b2z2 + b1z + b0)Y = (a2z2 + a1z + a0)X

ii) Convert back to the time domain, noting that zY means y(k+1):

y(k + 3) + b2y(k + 2) + b1y(k + 1) + b0y(k) = a2x(k + 2) + a1x(k + 1) + a0x(k)

This is the difference equation which relates X and Y.

One problem with this answer is it uses future values of each variable and the future is rather hard to
program. To solve this, do a change of variable (or delay everything by 3), resulting in

y(k) + b2y(k − 1) + b1y(k − 2) + b0y(k − 3) = a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

This is also the difference equation which relates X and Y (both are correct). This one is easier to
program, however, since it uses past values of X and Y rather than future values.

NDSU Z Transform ECE 461/661

3 July 25, 2020

iii) Solve for y(k)

y(k) = −b2y(k − 1) − b1y(k − 2) − b0y(k − 3) + a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

iv) Write this in code:

That's essentially your program. Note that you have to remember the previous outputs and inputs. One

way to do this is

while(1) {

 x3 = x2; // x(k-3)

 x2 = x1; // x(k-2)

 x1 = x0; // x(k-1)

 x0 = A2D_Read(0); // read x(k) from the A/D

 y3 = y2; // y(k-3)

 y2 = y1; // y(k-2)

 y1 = y0; // y(k-1)

 y0 = -b2*y1 - b1*y2 - b0*y3 + a2*x1 + a1*x2 + a0*x3;

 D2A(y0); // output y(k) to the D/A converter

 Wait_10ms();

 }

Example 2: Implement the following filter. Assume a sampling rate of 10ms.

Y = 


0.2z(z−0.9)

(z−1)(z−0.5)

X

Solution: Multiply it out

Y = 


0.2(z2−0.9z)

z2−1.5z+0.5


X

Cross multiply and solve for the highest power of zY

(z2 − 1.5z + 0.5)Y = 0.2(z2 − 0.9z)X

z2Y = (1.5z − 0.5Y + 0.2(z2 − 0.9z)X

meaning

y(k) = 1.5y(k − 1) − 0.5y(k − 2) + 0.2(x(k) − 0.9x(k − 1))

In code, only one line changes

NDSU Z Transform ECE 461/661

4 July 25, 2020

while(1) {

 x2 = x1; // x(k-2)

 x1 = x0; // x(k-1)

 x0 = A2D_Read(0); // read in x(k) from the A/D

 y2 = y1; // y(k-2)

 y1 = y0; // y(k-1)

 y0 = 1.5*y1 - 0.5*y2 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

There are several things to note here:

Filters in the z-domain can be implemented exactly in software. That isn't true in the LaPlace

domain.
To change the filter, you just change one line of code. That's much easier than building a new
op-amp filter.

Complex poles and zeros are not a problem in the z-domain. All you care about are the
coefficients in the numerator and denominator polynomials.
If you have a 3rd-order filter, you need to remember the 3 previous values of the inputs and

outputs. A 4th-order filter remembers the 4 previous values.

One other important thing to note:

In the s-domain, we don't like to have more zeros than poles. More zeros than poles means

you're differentiating the input. This tends to create a noise amplifier.
In the z-domain, you cannot have more zeros than poles. More zeros than poles means you're
using future values of the input - which I don't know how to do.

Also also

You have to have integer powers of s. s1/2Y means "the half-derivative of Y". I have no idea

what a half-derivative is. s1/2Y doesn't make sense.
You have to have integer powers of z. z1/2Y means "the value of Y next time you half-call the
subroutine." I know how to call a subroutine one time. I know how to call it two times. I don't

know how to call a subroutine half a time. z1/2Y doesn't make sense either.

NDSU Z Transform ECE 461/661

5 July 25, 2020

Find the response of K(z) for a sinusoidal input

To solve for the output with a sinusoidal input, you use phasor analysis. In the s-domain, you let

.s = jω

In the z-plane, you need a conversion from the s-plane to the z-plane.

The basic assumption behind LaPlace transforms is that all functions are in the form of

y(t) = est

Assume a fixed sampling rate of T seconds so that

t = kT

and k is the sample number. Then

y(kT) = eskT

or

y(k) = (esT)
k

This is identical to the assumption behind z-transforms.

z = esT

Hence, to find the output for a filter with a sinusoidal input, you let

z = esT = e jωT

(note: TI calculators need to be in radian mode for this to work.)

Example: Find the output of the following system

Y = 


20

(s+1)(s+5)

X

where

x(t) = 3 sin(4t)

Solution: Evaluate at s = j4




20

(s+1)(s+5)



s=j4

= 0.7576∠ − 114.620

The output is gain times the input

y(t) = (0.7576∠ − 114.620) ⋅ 3 sin(4t)

NDSU Z Transform ECE 461/661

6 July 25, 2020

y(t) = 2.2727 sin (4t − 114.620)

Example: Find the output of the following system with T = 0.01s (10ms)

Y = 


0.02z

(z−0.9)(z−0.8)

X

x(t) = 3 sin(4t)

Solution: Evaluate at

s = j4

z = esT = e j0.04 = 1∠2.2910




0.02z

(z−0.9)(z−0.8)



z=1∠2.2910

= 0.92035∠ − 31.040

Output = Gain * Input

y = (0.92035∠ − 31.040) ⋅ 3 sin(4t)

y(t) = 2.76104 sin (4t − 31.040)

You can verify this in VisSim:

Response of K(z) to a sinusoidal input. Note that the output is a sine wave with a gain and phase shift, just like we had in the s-domain. Also
note that you can see the sampling rate on the output (the stair-steps on the red curve, y(k))

NDSU Z Transform ECE 461/661

7 July 25, 2020

Table of z-transforms

If you want to find the output of a filter G(s) with a step input, you use LaPlace transforms along with a
table of LaPlace transforms and partial fraction expansion.

Similarly, if you want to find the output of a filter G(z) with a step iput, you use z-transforms along with
a table of z-transforms and partial fraction expansion.

Here we derive that table of z-transforms.

i) Delta Function . The discrete-time delta function isδ(k)

δ(k) =





1 k = 0

0 otherwise

k 0 1 2 3 4 5 6 7

delta(k) 1 0 0 0 0 0 0 0

The z-transform of a delta function is '1', just like the s-domain.

ii) Unit Step: The unit step is

u(k) =





1 k ≥ 0

0 otherwise

It's z-transform can be derives as follows. The unit step is:

k 0 1 2 3 4 5 6 7

u(k) 1 1 1 1 1 1 1 1

(1/z)*u(k) 0 1 1 1 1 1 1 1

Subtract

(1-1/z)u(k) 1 0 0 0 0 0 0 0

So,


1 − 1

z

 u(k) = 1




z−1
z

 u(k) = 1

u(k) = z

z−1

NDSU Z Transform ECE 461/661

8 July 25, 2020

iii) Decaying Exponential. Let

x(k) = aku(k)

k 0 1 2 3 4 5 6 7

x(k) 1 a a2 a3 a4 a5 a6 a7

a*(1/z)*x 0 a a2 a3 a4 a5 a6 a7

Subtract

(1-a/z)x 1 0 0 0 0 0 0 0

so

(1 − a
z)X = 1

(
z−a

z)X = 1

X = (z
z−a)

These let you create a table of z-transforms like we had in the s-domain:

function y(k) Y(z)

delta δ(k) 1

unit step u(k) z

z−1

decaying exponential aku(k) z
z−a

damped sinewave 2b ⋅ ak ⋅ cos (kθ + φ) ⋅ u(k) 


(b∠φ)z

z−(a∠θ)

 + 

(b∠−φ)z

z−(a∠−θ)



For the last entry, assume you have a complex conjugate pair:

Y(z) = 


(b∠φ)z

z−(a∠θ)

 + 

(b∠−φ)z

z−(a∠−θ)



Take the inverse z-transform

y(k) = 
(b∠φ)(a∠θ)k + (b∠ − φ)(a∠ − θ)k

 u(k)

Simplifying

y(k) = b(ak)e
j(kθ+φ) + e−j(kθ+φ) 

 u(k

Using Euler's identity

y(k) = 2b(ak)
e j(kθ+φ)+e−j(kθ+φ)

2

 u(k)

y(k) = 2b ⋅ ak ⋅ cos (kθ + φ) ⋅ u(k)

NDSU Z Transform ECE 461/661

9 July 25, 2020

Solving Functions in the z-Domain

Problem 1: Find the step response of

Y = 


0.2z

(z−0.9)(z−0.5)

X

i) Replace X(z) with the z-transform of a step

Y = 


0.2z

(z−0.9)(z−0.5)





z

z−1



ii) Use partial fractions to expand this. Note, however, that the table entries have a 'z' in the numerator.
So, factor this out first then take the partial fraction expansion

Y = 


0.2z

(z−1)(z−0.9)(z−0.5)

 z

Y = 




4

z−1

 + 

−4.5

z−0.9

 + 

0.5

z−0.5



 z

Multiply through by z

Y = 




4z

z−1

 + 

−4.5z

z−0.9

 + 

0.5z

z−0.5





iii) Now apply the table entries

k >= 0y(k) = 4 − 4.5 ⋅ (0.9)k + 0.5 ⋅ (0.5)k

Problem 2: Find the step response of a system with complex poles:

Y =





0.2z


z−0.9∠100 



z−0.9∠−100 






X

i) Replace X with its z-transforrm (a unit step)

Y =





0.2z


z−0.9∠100 



z−0.9∠−100 






 

z

z−1



ii) Factor our a z and use partial fractions

Y = 




5.355

z−1

 + 

2.98∠153.970

z−0.9∠100


 + 

2.98∠−153.970

z−0.9∠−100




 z

iii) Convert back to time using the table of z-transforms

 k >= 0y(k) = 5.355 + 4.859 ⋅ (0.9)k ⋅ cos (100 ⋅ k − 153.970)

NDSU Z Transform ECE 461/661

10 July 25, 2020

Note that in the s-domain, rectangular coordinates are more convenient

The real part of s tells you the rate at which the exponential decays
The complex part of s tells you the frequency of oscillations.

In the z-domain, polar coordinates are more convenient

The amplitude of z tells you the rate at which the signal decays
The angle of z tells you the frequency of oscillation.

In this case,

The signal decays by 10% each sample (0.9)k
The phase changes by 10 degrees each sample, or requires 36 samples per cycle

Time Value of Money

As a sidelight, you can also solve time-value of money problems using z-transforms.

Assume you borrow $100,000 for a house. How much do you have to pay each month to pay off the

loan in 10 years? Assume 6% interest per year (0.5% per month).

Solution: Let x(k) be how much money you owe today. The amount you owe next month, x(k+1), is

x(k + 1) = 1.005x(k) − p + X(0) ⋅ δ(k)

where 'p' is your monthly payment. Converting to the z-domain

zX − X(0) = 1.005X − p
z

z−1



(z − 1.005)X = X(0) − p
z

z−1



X = 


X(0)

z−1.005

 − p

z

(z−1)(z−1.005)



Using partial fractions

X = 


X(0)

z−1.005

 + pz




200

z−1

 − 

200

z−1.005





Converting back to the time domain

x(k) = 1.005kX(0) − 200p(1.005k − 1)u(k)

After 10 years (k=120 payments), x(k) should be zero

x(120) = 0 = $181, 939 − 200p(0.8194)

p = $1110.20

Your monthly payments are $1,110.20.

NDSU Z Transform ECE 461/661

11 July 25, 2020

If you stretch this out to 30 years (k = 360 payments), the monthly payment becomes

x(360) = 0 = $602, 257 − 200p(5.0226)

p = $599.55

Paying off the loan over a time span 3 times longer doesn't reduce the payments by 3 times. It's actually
only 46% less. The total amount you'll pay on the loan, however, increases from $133,224 to $215,838.

note: That's pretty much all a business calculator is: a calculator which does z-transforms where the
keys are renamed "interest rate", "initial loan value" and "number of payments."

NDSU Z Transform ECE 461/661

12 July 25, 2020

NDSU Z Transform ECE 461/661

13 July 25, 2020

