
Meeting Design Specs using Root Locus

So far, we have

Lead compensators which cancel a pole and move it left, speeding up the root locus.

PID compensators which add a zero at s=0 and add zero, one, or two zeros, pulling the root locus left,

speeding up the system.

Essentially, what you're doing is

Adding a pole at s = 0 (if needed) to make the system type-1

Adding zeros to cancel poles, speeding up the system, and

Adding poles that are left and out of the way so that the compensator, K(s), has finite high-frequency gain.

If you don't care whether the resulting K(s) has a name or not, then you're free to add zeros and poles as needed.

This lets you design a compensator to meet some design specifications.

Example: Design a controller for the following system

G(s) = 


361.2378

(s+0.3234)(s+2.081)(s+5.439)(s+10.1)(s+15.65)



so that the closed-loop system meets the following requirements

No error for a step input,

A 2% settling time of 4 seconds,

20% overshoot for a step input, and

The high-frequency gain of K(s) is finite

Solution: First, translate the requirements to root-locus terms.

No error means the system should be type-1. It's presently type-0, so add a pole at s = 0

The 2% settling time tells you that the real part of the closed-loop dominant pole should be at -1

The overshoot tells you that the damping ratio should be 0.4559

A finite high-frequency gain means the number of poles is greater than or equal to the number of zeros in

K(s)

In short

Make the system type-1

Place the closed-loop dominant pole at s = -1 + j2

Step 1) Add a pole at s = 0 to make the system type-1

K(s) = 


k
s



NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 1 July 24, 2020

Step 2) Start canceling poles until the system is too fast (the root locus passes left of -1 + j2)

K(s) = k
(s+0.3234)(s+2.081)

s



Step 3) Since you added two zeros, you need to add two poles (finite high frequency gain). One pole belongs at

s = 0. The other is unknown at present

K(s) = k
(s+0.3234)(s+2.081)

s(s+a)



Pick 'a' so that s = -1 + j2 is on the root locus. To do this, pick 'a' so that the angles add up to 180 degrees

GK = 


361.2378

(s+0.3234)(s+2.081)(s+5.439)(s+10.1)(s+15.65)





k(s+0.3234)(s+2.081)

s(s+a)



GK = 


361.2378k

s(s+5.439)(s+10.1)(s+15.65)(s+a)



s=−1+j2

= 1∠1800

Evaluate what you know:




361.2378

s(s+5.439)(s+10.1)(s+15.65)



s=−1+j2

= 0.2409∠ − 160.990

This is 19.01 degrees short of 180 degrees, meaning the term we left out (1/s+a) must contribute that much phase

∠


1

s+a



s=−1+j2

= −19.010

∠(s + a) = 19.010

Using some trigonometry

a = 2

tan 19.010 


+ 1

a = 6.8046

0-1-2-3-4-5-6-7-8-9-10
0

1

2

3

4

19.01 deg

2

2 / tan(19.01) +1

Pick the pole at 'a' so that the angle from the pole to -1 + j2 is 19.01 degrees

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 2 July 24, 2020

This results in

K(s) = k
(s+0.3234)(s+2.081)

s(s+6.8046)



Step 4) Pick 'k' so that GK = -1 at s = -1 + j2

With this K(s)

GK = 


361.2378k

s(s+5.439)(s+6.8046)(s+10.1)(s+15.65)



Evaluating at s = -1 + j2




361.2378

s(s+5.439)(s+6.8046)(s+10.1)(s+15.65)



s=−1+j2

= 0.0392∠1800

The 180 degrees is a check that -1 + j2 is on the root locus.

The gain is off, however (it should be 1.00), so add a gain to make it one

k = 1

0.0392
= 25.49

resulting in

K(s) = 25.49
(s+0.3234)(s+2.081)

s(s+6.8046)



Check in Matlab:

 G = zpk([],[-0.3234, -2.081, -5.439, -10.1, -15.65], 361.2378)

 361.2378

(s+0.3234) (s+2.081) (s+5.439) (s+10.1) (s+15.65)

 K = zpk([-0.3234, -2.081],[0, -6.8046], 25.49)

25.49 (s+0.3234) (s+2.081)

 s (s+6.805)

 Gcl = minreal(G*K / (1 + G*K))
 eig(Gcl)

 -1.0000 + 2.0000i pole we placed

 -1.0000 - 2.0000i
 -9.7606 + 4.0657i
 -9.7606 - 4.0657i
 -16.4724

Note that the dominant pole is at -1 + j2, telling us that we designed K(s) correctly. The step response is then

 t = [0:0.01:5]';
 y = step(Gcl, t);
 plot(t,y);
 grid on

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 3 July 24, 2020

Step response of the closed-loop system

Checking in VisSim

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 4 July 24, 2020

Note that the requirements are met

The DC gain is one

The settling time is 4 seconds

The overshoot is 20%, and

K(s) has as many poles as zeros

Circuit Implementation

Recall

K(s) = 25.49
(s+0.3234)(s+2.081)

s(s+6.8046)



This is in a form we're not familiar with. If you rewrite it as

K(s) = 


(s+0.3234)
s






25.49(s+2.081)

s+6.8046



then you can implement this as a PI compensator cascaded with a lead compensator. Note that multiplication is

commutative. This means

You can swap the zeros if you want, and

You can distribute the gain of 25.49 between the two sections

In theory, it makes no difference how you split up the gains. In practice, try to keep the gain of each stage about

the same to prevent saturating an op-amp.

Let

K(s) = 
5.05 s+0.3234

s



5.05 s+2.081

s+6.8046



1M

198.1k

3.0921uF

1M

198.1k 1007.2k

0.477uF

R1

R2
C1

R3 R4

C2
R5

PI
Lead

449k

1.069uF

Circuit to implement K(s) = 
5.05

s+0.3234
s




5.05

s+2.081

s+6.8046



Computations for the PI: Computations for the Lead:

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 5 July 24, 2020

 K1(s) = 5.05
s+0.3234

s

 K(s) = 5.05

s+2.081

s+6.8046



Let R2 = 1M. The high frequency gain is 5.05 Let R5 = 1M. The high-frequency gain is 5.05

R2

R1
= 5.05

R5

R3
= 5.05

R1 = 198.1k. The zeros is at 0.3234 R3 = 198.1k. The DC gain is 1.5444




1

R2C

 = 0.3234

R5

R3+R4
= 1.5444

R3 + R4 = 647.8k

R4 = 449.1k

The zero is at 2.081

1

R5C2
= 2.081

C2 = 1.069uF

Example 2:

Let

G(s) = 


100

(s+1)(s+3)(s+5)(s+10)



Design a compensator so that the closed-loop step response looks like

Desired Step Response

Solution:

Step 1: Translate the requirements to root-locus terms.

The DC gain is one: the system should be type-1

The 2% settling time is 2 seconds: the real part of the closed-loop dominant pole should be -2

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 6 July 24, 2020

The overshoot is 12%: the damping ratio should be , meaning the closed-loop dominant poleζ = 0.55
should be s = -2 + j3

Step 2: Find K(s) so that s = -2 + j3 is on the root locus. Start with

K(s) = 1
s

Start canceling zeros until the phase of GK at s = -2 + j3 is below -180 degrees (or the root locus passes to the left

of s = -2 + j3).

K(s) =
(s+1)(s+3)(s+5)

s

GK = 


100

s(s+10)



Since you added three zeros, add three poles. One pole is at s = 0, making it a type-1 system. The other two are

unknown. Say they're both at '-a'

K(s) = 


(s+1)(s+3)(s+5)

s(s+a)2




GK = 


100

s(s+a)2(s+10)




Find 'a' so that the angle of GK is 180 degrees at s = -2 + j3




100

s(s+10)



s=−2+j3

= 3.2461∠ − 144.260

To make the angles add up to 180 degrees, you need to subtract another 35.74 degrees

∠


1

(s+a)2




s=−2+j3

= −35.740

∠(s + a)2 = 35.740

∠(s + a) = 17.870

Using some trigonometry

a = 3

tan 17.870


+ 2 = 11.301

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 7 July 24, 2020

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0

1

2

3

4

5

17.87 deg

a

3 / tan(17.87)
+2

Two poles are placed at -1 so that the angle to s = -2 + j3 is 17.87 degrees

This results in

K(s) = 


(s+1)(s+3)(s+5)

s(s+11.301)2




GK = 


100k

s(s+11.301)2(s+10)




Step 3: Find k so that GK = -1 at s = -2 + j3




100

s(s+11.301)2(s+10)




s=−2+j3

= 0.0340∠1800

k = 1

0.0340
= 29.4222

and

K(s) = 29.4222
(s+1)(s+3)(s+5)

s(s+11.301)2




Checking the step response in Matlab:

 Gd = zpk([],[-2+j*3,-2-j*3],13);

 G = zpk([],[-1,-3,-5,-10],100);
 K = zpk([-1,-3,-5],[0,-11.301,-11.301],29.4222);
 Gcl = minreal(G*K / (1+G*K));

 eig(Gcl)

 -14.3010 + 4.6697i
 -14.3010 - 4.6697i
 -2.0000 + 3.0000i
 -2.0000 - 3.0000i

 t = [0:0.01:3]';
 yd = step(Gd, t);

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 8 July 24, 2020

 y = step(Gcl,t);
 plot(t,y,t,yd)

Desired Step Response (green) and Actual Step Response (blue)

To implement K(s), split this into three first-order circuits

K(s) = 29.4222
(s+1)(s+3)(s+5)

s(s+11.301)2




K(s) = 
3.087

s+1
s





3.087

s+3

s+11.301





3.087

s+5

s+11.301





This would then be a PI * Lead * Lead compensator

NDSU Meeting Design Specs using Root Locus ECE 461/661

JSG 9 July 24, 2020

