
PID Compensators using Root Locus

Introduction

Given a feedback system around a plant, G(s), add a compensator K(s) to improve the closed-loop response.

G(s)K(s)
R E U Y

plantcompensator

One common type of compensator is a PID (Proportional Integral Derivative):

K(s) = P +
I
s + Ds

Essentially, you're just adding poles and zeros as needed:

I: If the system is type-0, add a pole as s=0 to make it type-1. This reduces the steady-state error to zero.

PI: Add a pole at s=0 to make a type-0 system type-1. Add a zero to get rid of a bothersome pole.

PID: Ditto, but add two zeros to cancel two bothersome poles.

PID Circuits:

Circuits to implement these are as follows:

R1
C

R2

PI Compensator: K(s) = −k
s+a

s



where

a = 


1

R1C




k =
R1

R2

NDSU PID Compensators ECE 461/661

JSG 1 July 24, 2020

note: R1 = 0 for an I compensator, C = 0 for a P compensator.

R1
C

R2

C2

PID Compensator: K(s) = −
(R1C1s+1)(R2C2s+1)

R2C1s



Example: Take G(s) to be the 5th-order heat equation from before

G(s) = 


361.2378

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)




I Compensation:

K(s) =
I
s = k

1
s



GK = 


361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)s



The root locus becomes the following:

Root Locus for Integral Compensation

NDSU PID Compensators ECE 461/661

JSG 2 July 24, 2020

The point on the root locus which intersects the 0.4559 damping line is

s = -0.1249 + j0.2483

k at this point is




361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)s




s=−0.1249+j0.2483

= −1

k = 0.3974219

resulting in

K(s) = 


0.3974219
s




The steady-state error for a step input is zero: it's a type-1 system.

The error constant Kv is

Kv =
s→0
lim (s ⋅ G ⋅ K)

Kv = 


361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)




s→0

= 0.2481

The input at t=0 is

U t=0 = (K(s))s→∞
= 0

The resulting specifications for the I-compensated system are

P and I Compensation

K(s) Closed-Loop Dominant
Pole(s)

U at t=0
K(s) as s -> infinity

Kv 2% Settling Time
seconds

 5.5117 -0.6942 + j1.3884 5.5117 0 5.76




0.3974219
s




-0.1249 + j0.2483 0 0.2481 32.02

Note that the I-compensator

Reduced the steady-state error to zero, but

Resulted in a much slower system.

This is typical for I-type compensators.

Verifying this by taking the step response of the closed-loop system results in:

NDSU PID Compensators ECE 461/661

JSG 3 July 24, 2020

Step Response with I Compensation

0
1uF

2.51M

Circuit to implement an I compensator

PI Compensation

If you add a proportional (P) term to K(s) you get a PI compensator.

K(s) = P +
I
s

With a little algebra, this can be rewritten as

K(s) = 


Ps+I
s

 = k(

s+a
s)

NDSU PID Compensators ECE 461/661

JSG 4 July 24, 2020

Essentially, with a PI compensator, you

Add a pole at s=0 to make the system type-1

Add a zero to cancel a pole.

From before, the pole at -0.3234 was the problem-child, slowing up the system. So, let's cancel that pole with the

zero of the PI compensator

K(s) = k
s+0.3234

s



Then

GK = 


361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)s



note: What placing the zero at s = -0.3234 means is




Ps+I
s

 = P

s+I/P
s

 = k

s+0.3234
s




You're specifying the ration if I/P when you place the zero.

To determine k, sketch the root locus of GK

Root locus of 
361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)s



NDSU PID Compensators ECE 461/661

JSG 5 July 24, 2020

The point on the root locus that intersects the 0.4559 damping line is

s = -0.5886 + j1.1772

At this point




361.2378

(s+15.65)(s+10.1)(s+5.439)(s+2.081)s



s=−0.5886+j1.1772

= 0.1998∠1800

k is then

k =
1

0.1998
= 5.0050

resulting in

 K(s) = 5.0050
s+0.3234

s



The error-constant, Kv, is then

Kv =
s→0
lim (s ⋅ G ⋅ K) = 1.0106

and the specifications for the PI compensated system are:

P, I, and PI Compensation

K(s) Closed-Loop Dominant
Pole(s)

U at t=0
K(s) as s -> infinity

Kv 2% Settling Time
seconds

 5.5117 -0.6942 + j1.3884 5.51 0 5.76




0.3974219
s




-0.1249 + j0.2483 0 0.2481 32.02

5.0050
s+0.3234

s



 -0.5886 + j1.1772 5.00 1.0106 6.79

Note that the PI compensator results in a much faster system with better tracking.

What the integrator does is it searches to find the input, U, that forces the output to match the set point.

With an I compensator, the initial guess for U is zero

With a PI compensator, the initial guess for U is 5.00

This helps speed up the system. Moving the dominant pole left also helps improve the settling time.

The faster system can be verified in Matlab by plotting the step response:

NDSU PID Compensators ECE 461/661

JSG 6 July 24, 2020

Step Response of the PI Compensated system.

As expected

The steady-state error is zero

The overshoot is 20% (actually slightly below 20%), and

The 2% settling time is around 7 seconds.

A circuit to implement K(s) is

K(s) = 5.0050
s+0.3234

s

 =






R1+
1

C1s

R2




 = 


R1

R2








s+
1

R1C1

s






Let

R1 = 1M

Then




R1

R2


 = 5.005

R2 = 199.8k

and

1

R1C1
= 0.3234

NDSU PID Compensators ECE 461/661

JSG 7 July 24, 2020

C1 = 3.09uF

199.8k

1M
3.09uF

R1
C1

R2

Circuit to implement a PI compensator. Just add R1 and I becomes PI

PID

If you add the derivative term to K(s) you get

K(s) = P +
I
s + Ds

With a little algebra

K(s) = 


Ds2+Ps+I
s


 = D




s2+
P

D
s+

I

D

s



With a PID compensator

You add a pole at s = 0, making the system type-1

You also add two zeros, allowing you to cancel two poles

Since we're adding a pole at s=0, we don't need to keep the pole at s = -0.32 any more. The two slowest poles can

then be canceled with the zeros, resulting in

K(s) = k
(s+0.3234)(s+2.081)

s



GK = 


361.2378k

(s+15.65)(s+10.1)(s+5.439)s




To find k, find the point on the root-locus that intersects the damping line:

NDSU PID Compensators ECE 461/661

JSG 8 July 24, 2020

Root Locus Plot for 
361.2378k

(s+15.65)(s+10.1)(s+5.439)s



The point on the root locus is

s = -1.3947 + j2.7895

At this point




361.2378

(s+15.65)(s+10.1)(s+5.439)s



s=−1.3947+j2.7895

= 0.1776∠1800

meaning

k =
1

0.1776
= 5.6321

and

K(s) = 5.6321
(s+0.3234)(s+2.081)

s



This results in the following parameters for the PID compensated system:

NDSU PID Compensators ECE 461/661

JSG 9 July 24, 2020

PID Controllers

K(s) Closed-Loop Dominant
Pole(s)

U at t=0
K(s) as s -> infinity

Kv T2%

seconds

 5.5117 -0.6942 + j1.3884 5.51 0 5.76




0.3974219
s




-0.1249 + j0.2483 0 0.2481 32.02

5.0050
s+0.3234

s



 -0.5886 + j1.1772 5.00 1.0106 6.79

5.6321
(s+0.3234)(s+2.081)

s



-1.3947 + j2.7895 infinity 2.3665 2.87

Note that by adding a second zero, the system is faster with better tracking. Differentiating the input causes

problems, however

If there is a step input, you apply the derivative of a step to the system (infinite input).

If there is noise on the sensors, you differentiate this noise, amplifying it.

The step response verifies the compensator design:

The steady-state error is zero (courtesy of the I compensator)

The overshoot is 20%, and

The 2% settling time is about 2.87 seconds.

On paper, a PID compensator works better than a PI compensator. In practice, differentiation causes lots of

problems. Usually just PI compensator is used.

NDSU PID Compensators ECE 461/661

JSG 10 July 24, 2020

Step Response with a PID Compensator

If you did want to implement a PID compensator, a circuit to do this is as follows. Note that

K(s) = 5.6321
(s+0.3234)(s+2.081)

s

 = 


(R1C1s+1)(R2C2s+1)

R2C1s



Let R1 = 1M

C1 = 3.09uF
1

R1C1
= 0.3234

C2 = 5.63uF5.6321 =
R1C1R2C2

R2C1
= R1C2

R2 = 87.1k
1

R2C2
= 2.081

87.1k

5.63uF
1M

3.09uF

PID Compensator Circuit

NDSU PID Compensators ECE 461/661

JSG 11 July 24, 2020

