
Root Locus

Background:

Routh Criteria tells you the range of gains that result in a stable system.  It doesn't tell  you how the system will

behave, however.  That's a problem.

For example, for the following system, find 'k' for a 'good' response, where 'good' means a fast response with less

than 10% overshoot for step input.

K G
U YR

Root Locus:  Find the roots of the closed-loop system for 0 < k < infinity

G(s) = 


1000

s(s+5)(s+20)



The open-loop system is

GK = 


1000k

s(s+5)(s+20)



while the closed-loop system is




GK

1+GK

 = 


1000k

s(s+5)(s+20)+1000k




Using a Routh table, the range of k for stability can be found to be

0 < k < 2.5

That doesn't really help.  If you plot the step response for various values of k in this range, you get the following

step responses:

Matlab Code:

t = [0:0.05:10]';
G = zpk([],[0,-5,-20],1000)
k1 = 0.02;
k2 = 0.05
k3 = 0.1
k4 = 0.3

y1 = step(G*k1 / (1+G*k1), t);
y2 = step(G*k2 / (1+G*k2), t);
y3 = step(G*k3 / (1+G*k3), t);
y4 = step(G*k4 / (1+G*k4), t);

plot(t,y1,t,y2,t,y3,t,y4)
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Step Response for k = { 0.02, 0.05, 0.1, 0.3 }

Note from the step responses:

All four plots are stable as the Routh Criteria predicts:  they are all in the range of 0 < k < 2.5

The response for each one is different - meaning that the closed-loop poles are shifting

The response isn't random:  there is a smooth progression from one step response to the next.

This is basically the concept of a root-locus plot.  

When you close the feedback look, the poles shift.

If you could plot how the poles are shifting, as k varies, you'll know what options you have for what the

closed-loop system's behaviour.

This plot is called a root locus plot since it plots the roots of the closed-loop system.

Definitions:

Assume a feedback system of the following form:

K G
U YR

Root Locus:  Find the roots of the closed-loop system for 0 < k < infinity

where

GK = 


k⋅z(s)

p(s)


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Open-Loop Gain:   GK

Closed-Loop Gain:   



kG

1+kG




Open-Loop Poles:     solutions to p(s) = 0

Open-Loop Zeros:    solutions to z(s) = 0.

Closed-Loop Poles:  solutions to p(s) + kz(s) = 0.

Root Locus:              Plot of the closed-loop poles as k varies from 0 to infinity.

Sketching a Root Locus Plot (method #1)

One way to sketch a root locus plot is to compute the closed-loop poles for a large number of gains and plot these

on a graph.  It isn't very efficient, but it's something MATLAB is good at.

Example:  Sketch the roots of the following polynomial for 0 < k < 2.5

s(s + 5)(s + 20) + 1000k = 0

Solution:  In Matlab

 p = poly([0,-5,-20])

          1           25        100            0

 z = [0,0,0,1000]

           0           0           0        1000

 k = [0:0.01:2.5]';
 for i=1:length(k)
   R = roots(p + k(i)*z);
   plot(real(R),imag(R),'*');
   hold on
   end

Method 1 for Drawing a Root Locus:  Find the roots for 2500 values of k
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Note that this plot is consistent with what we saw on the previous step responses:

The dominant pole starts out near s = 0 and moves left.  As the gain increases, the pole at the origin speeds

up.

As k increases, the dominant pole becomes complex, resulting in overshoot in the step response.

Method 2:  Matlab Function rlocus

A second method uses the funciton rlocus

R = rlocus(G, k);

R = closed-loop roots
G = system, G(s)
k = gains to evaluate

This is actually identical to method #1, just in an m-file

Example:

 G = zpk([],[0,-5,-20],1000);
 k = logspace(-2,1,1000)';
 rlocus(G,k);

Root Locus Plot from the Matlab function rlocus(G, k)
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Note that the Matlab function rlocus is convenient, but it doesn't give you much insight for how and why the root

locus looks like this.

Method #3:  Graphical Methods

Assume you have a unity feedback system as follows:

K G
U YR

where 

KG = 


kz(s)

p(s)



As you vary k from 0 to infinity, the dynamics of the closed-loop system will vary.  The closed-loop system will

be

.



kG

1+kG


 = 


k⋅z(s)

p(s)+k⋅z(s)



The roots of the closed-loop system determine how the system will behave.  Hence, we are interested in the

solutions to

p(s) + k ⋅ z(s) = 0

A root locus plot is a plot of the solutions to p(s)+kz(s)=0 for 0<k< .∞

Rewriting this

p(s)

z(s)
= −k = k∠1800

Since 's' can be complex, this graphical interpretation of   provides two pieces of information:  one for−k =
p(s)

z(s)

amplitude and one for the angle:

1)  The amplitude of both sides must match, meaning

k =
Π(distantes from the poles to point s)

Π(distantes from the zeros to point s)

2) The angles must match:

  1800 = Σ (angles from the poles to point s) − Σ (angles from the zeros to point s
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Plotting all points on the 's' plane which satisfies the angle condition produces the root-locus.  The root locus tells

you how the system can behave.  Once you pick a point on the root locus, k is found using the first equation.

Rules for Plotting the Root Locus:

Recall that the root-locus plot is a plot of all points which satisfy

p(s) + k ⋅ z(s) = 0

which is also a plot of all points which satisfy the angle condition.  From (3), two solutions are obvious:

1. Poles: 

At k=0, the roots start at the open-loop poles.  (i.e. the solution to p(s)=0).  Mark an 'X' at these points.

2. Zeros: 

As , the roots go the open-loop zeros (i.e. the solution to z(s)=0).  Mark an 'O' at these points.k → ∞

3. Real Axis Loci:  

Any point on the real axis where the angles add to 180 degrees will be on the root locus.  Note that 

If a real pole is to the left of point 's', the angle from the pole to this point is zero degrees.

If a real pole is to the right of point 's', the angle from the pole to point 's' is 180 degrees.

Complex poles have no affect.  Two poles to the left add zero degrees (twice).  Two poles to the right add

3600 = 00.

Zeros act like poles since +1800 = -1800.

Adding 1800 an odd number of times produces 1800.

Adding 1800 an even number of times produces 00.

Hence,

Real axis loci will be whenever there are an odd number of poles and zeros to the right.

4.  Number of Asymptotes:  

Assume there are m zeros and n poles. m of the poles will go the m zeros.  The remainder go to infinity.

The number of asymptotes = n-m.   (# of poles - # of zeros)

5. Asymptote Angle:  

Assume that there are m zeros and n poles.  Then, k is from

−k =
p(s)

z(s)
= sn+...

sm+...
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If  then  as well.  In this case, only the highest power of 's' matters:k → ∞ s → ∞

−k = sn

sm = sn−m

The angle is then

1800 = (n − m)∠φ

where  is the angle of 's'.φ

        The asymptote angles are: φ = 1800+k⋅3600

n−m (k=0, 1, 2, ...)

6. Asymptote Intersect:  

At infinity, the poles and zeros look like they are at the same spot on the 's' plane (relatively).  This will be the

'average' pole and zero location

Asymptote Intersect =
Σ (poles)−Σ (zeros)

#poles−#zeros

7. Breakaway Point:  

If two real-axis poles come together, they will move away from the real axis at a point.  Two ways to compute

these points are

Treat each pole as a - charge and each zero as a + charge.  An electron at equilibrium on the real axis will

be at a breakaway point.

Solve .  The sensitivity of the root locus at the breakaway point is infinity ( a small change
d

ds




p(s)

z(s)

 = 0

in k produces a large change in the root location. )

8. jw Crossings:  

These are important since they tell you what gain makes the system go unstable:

angle(G(s))s=jω = 1800

9. Departure Angle:  

If a pole or zero is complex, the departure angle is the angle at which the root locus leaves the pole or enters the

zero.  This is found by summing the angles to 180 degrees.
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10. Gain at a point on the root-locus:  

The root locus plots all possible locations that the system's roots can be for .  The value of k at any0 < k < ∞

particular point on the root locus comes from

.


kz(s)

p(s)

 = kG(s) = −1

The minus sign means that the angles must add to 180 degrees.  The amplitude tells you the value of k.

Root Locus Summary
p(s) + k z(s) = 0

Poles solution to p(s)=0

Zeros solution to z(s)=0

Real Axis Loci: There are an off number of poles or zeros to the
right

Breakaway Point(s) d

ds




p(s)

z(s)

 = 0

jw crossing  ang(G(jw)) = 1800

Number of asymptotes n-m   (#poles - #zeros)

Asymptote Angles 1800+k⋅3600

n−m

Asymptote Intersect Σ poles−Σ zeros

n−m

Gain at any point on the
root-locus

k ⋅ G(s) = −1

NDSU Root Locus ECE 461/661

July 22, 2020



Problem 1a:  Sketch the root locus of

G(s) = 


1

s(s+2)



Solution:

Number of poles = 2, number of zeros = 0.

Open-Loop poles at {0, -2}.  Mark an 'X' at these points.

Real Axis Loci:   (0, -2)

Number of asymptotes = 2

Asymptote Angles =     (note that the asymptotes split the s-plane into 2 equal regions)±900

Asymptote Intersect:  
Σ poles−Σ zeros

n−m

 = 


−2

2

 = −1

Breakaway Point:      s=-1.
d

ds
(s(s + 2)) = 2s + 2 = 0.

jw crossings:  s=j0.

The following is then the root locus plot:
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Asymptote

Asymptote Intersect

Problem 1b:  Describe how the previous system behaves as k increases from 0 to infinity:

Solution:  From the root-locus, the closed loop poles start at the open-loop poles and move along the root locus.

For k small, the system behaves as a slow first-order system.

As k increases, the system speeds up until it has a settling time of 4 seconds. (the pole at s=0 moves left to

s=-1).

When k becomes bigger than 1, the system has a settling time of 4 but starts to have some overshoot in the

step response.  (The real part of the dominant pole is at -1 but the complex part increases.)

For large k, the system becomes more and more oscillatory but still has a 4 second settling time.
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Problem #2a:  Sketch the root locus of 

G(s) = 


1

s(s+2)(s+5)



Solution:  This will be similar to the previous root locus only with a third pole at -5.  This pole repels the root

locus, pushing it into the right-half plane.

Number of poles = 3, number of zeros = 0.

Open-Loop poles at {0, -2, -5}.  Mark an 'X' at these points.

Real Axis Loci:   (0, -2), (-5, - )∞

Number of asymptotes = 3 

Asymptote Angles =   (note that the asymptotes split the s-plane into 3 equal regions)±600, 1800

Asymptote Intersect:  
Σ poles−Σ zeros

n−m

 = 


(0)+(−2)+(−5)

3−0

 = −2.3333

Breakaway Point:      (s=-0.88, =3.79)  The pointd

ds
(s(s + 2)(s + 5)) = d

ds
(s3 + 7s2 + 10s) = 3s2 + 14s + 10 = 0

(s=-0.88) is on the root locus and is the breakaway point.

jw crossings:  s=j3.16.   (G(j3.16)) = 0.0143∠1800

The following is then the root locus plot
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Asymptotes
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Real Axis Loci

Breakaway Point

jw Crossing

Note:  The third pole at -5 has

Pushed the root-locus to the right (causing it to go into the right-half plane)

Pushed the breakaway point away from -1 (the midpoint between the former breakaway point)
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Example 3:  Sketch the root locus of

G(s) = 


1

s(s+2)(s+4)(s+5)



Solution:

Number of poles = 4, number of zeros = 0.

Open-Loop poles at {0, -2, -4, -5}.  Mark an 'X' at these points.

Open-Loop zeros: none

Real Axis Loci:   (0, -2), (-4, -5)

Number of asymptotes = 4

Asymptote Angles =   ±450, ±1350

Asymptote Intersect:  
((0)+(−2)+(−4)+(−5))

4
= −2.75

Breakaway Point:      s = {-0.7438, -4.5771}d

ds




s(s+2)(s+5)(s+10)

s2+2s+2


 = 0

jw crossings:     s = j1.9069 G(j1.9069) = 0.0080∠1800

The following is then the root locus plot
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Note:  The two pole at -4, and -5 have

Pushed the root locus to the right even harder (now going right at an angle of 45 degrees)

Pushed the breakaway point right of -1 (the former breakaway point).

Summary:

Note that poles repel the root locus.  As you add poles at -4 and -5, the root locus is pushed further and further to

the right.
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Zeros behave the opposite way of poles: they attract the root locus.  For example, if you compare

G(s) = 


1

s(s+2)(s+4)(s+5)

 vs 

(s+4)

s(s+2)(s+4)(s+5)

 vs 

(s+4)(s+5)

s(s+2)(s+4)(s+5)



the zeros at -4 and -5 will pull the roots towards them as shown below.

-6 -5 -4 -3 -2 -1 0 1
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2

3

Zeros at -5 and -4 attract

the root locus

No Zeros

Zero at
-4

Zeros at

-4, -5

This will be a useful tool later on:

If you want to push the root-locus to the right, add a pole to the left or slide fast pole right.

If you want to pull a root-locus to the left, add zeros to the left to attract the root-locus.  
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