
Mass & Spring Systems: The Wave Equation

Mass and spring systems also are dynamic systems. One way to model these systems is to

1) Replace the mass, spring, and friction terms with their LaPlace admittance,

2) Redraw the system as an electric circuit, and

3) Write the voltage node equations.

The LaPlace admittance's come from modeling the system as

Force = mass * acceleration

F = Z X (F = force, Z = admittance, X = displacement)

which has the electrical analog

I = G V (current = admittance * voltage).

Mechanical System Electrical Analog

Force in the positive

direction

Current to the node

Displacement in the

positive direction

Positive voltage

Mass, (see below) Admittance

Symbol F = Z X

Relationship

LaPlace value of

Addmittance

Mass f = m x'' s2 m

Spring f = k x k

Friction f = B x'

f = fv x'

sB

s fv

Example:

Write the equations of motion for the following mass and spring system:

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 1 July 20, 2020

K1

f

m1

B3

K2

K3

m2

B1 B2x1 x2

Solution:

Step 1: Draw the circuit equivalent:

X1 X2

F K1

s B1

M1 s²

B3 s

K2

M2 s²

B2 s

K3

Step 2: Write the voltage node equations. From before

(The sum of the admittance's to node a)Va - (the sum of the admittances from node a to b)Vb - ...)

= (The current to node a)multiply a: times (1/R2) and

(K1 + B1s + M1s2 + K2 + B3s)X1 − (K2 + B3s)X2 = F

(M2s2 + B2s + K3 + K2 + B3s)X2 − (K2 + B3s)X1 = 0

Step 3: Solve to find the output as a function of the input. State-Space really helps here

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 2 July 20, 2020

Solve for the highest derivative:

M1s2X1 = −(K1 + K2 + B1s + B3s)X1 + (K2 + B3s)X2 + F

M2s2X2 = −(B2s + K3 + K2 + B3s)X2 + (K2 + B3s)X1

Put in matrix form. Note that there are two energy states for each mass

Position (X)

Velocity (sX)

s















X1

X2

. ..

sX1

sX2














=



















0 0
.
.. 1 0

0 0
.
.. 0 1

.




−(K1+K2)

M1







K2

M1




.

..



−(B1+B3)

M1







B3

M1







K2

M2







−(K2+K3)

M2




.

..



B3

M2







−(B2+B3)

M2




































X1

X2

. ..

sX1

sX2














+



















0

0
. ..




1

M1




0


















F

Y = X2 =  0 1 0 0 













X1

X2

sX1

sX2













+ [0]F

Note that

You have 2N states, where N is the number of masses. Each mass has two energy states (kinetic and

potential energy) giving your 2N state variables.

The first N rows are [0 : I] where I is the identity matrix. This tells MATLAB that the states are position

and velocity.

The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the heat equation which always

has real poles.

Finding the Transfer Function:

To find the transfer function, use MATLAB or SciLab. Assume for example that

M = 1kg

B = 2 Ns/m

K =10 N/m

Then the state-space model is:

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 3 July 20, 2020

s













X1

X2

sX1

sX2













=













0 0 1 0

0 0 0 1

−20 10 −4 2

10 −20 2 −4

























X1

X2

sX1

sX2













+













0

0

1

0












F

MATLAB Code: Input the A B C D matrices:

A = [0,0,1,0 ; 0,0,0,1 ; -20,10,-4,2 ; 10,-20,2,-4];

B = [0;0;1;0];

C = [0,1,0,0];

D = 0;

Use these to define G(s):

G = ss(A,B,C,D)

Once G(s) is in MATLAB, find the transfer function

zpk(G)

 2 (s+5)

(s^2 + 2s + 10) (s^2 + 6s + 30)

meaning:

 X2 = 


2(s+5)

(s2+2s+10)(s2+6s+30)


F

If you want to approximate this with a 2nd-order model, keep the slowest pole and match the DC gain

DC = evalfr(G,0)

 0.0333333

So

X2 ≈ 


0.3333

(s+1±j3)


F

To check the response in MATLAB, take the two step responses.

Input the 2nd-order approximation:

G2 = zpk([],[-1+j*3,-1-j*3],0.3333)

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 4 July 20, 2020

Take the step response of the two systems:

t = [0:0.1:100]';

x2 = step(G,t);

x2a = step(G2,t);

and plot

plot(t,x2,t,x2a)

xlabel('Time (seconds)');

ylabel('X2 (meters)');

Note that the 2nd-order model isn't that good of an approximation: the 'fast' pole is only 3x faster.

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 5 July 20, 2020

Matlab Code:

 a11 = zeros(2,2);

 a12 = eye(2,2);

 a21 = [-20,10;10,-20];

 a22 = [-4,2;2,-4];

 A = [a11,a12;a21,a22]

 0 0 1 0

 0 0 0 1

 -20 10 -4 2

 10 -20 2 -4

 B = [0;0;1;0];

 C = [0,1,0,0];

 D = 0;

 G = ss(A,B,C,D);

 zpk(G)

 2 (s+5)

(s^2 + 2s + 10) (s^2 + 6s + 30)

 tf(G)

 2 s + 10

s^4 + 8 s^3 + 52 s^2 + 120 s + 300

 X2 = 


2(s+5)

(s+3±j4.58)(s+1±j3)


F

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 6 July 20, 2020

Wave Equation: (fun stuff)

If you have N mass-spring systems in series, you get coupled 2nd-order differential equations, termed the Wave

equation

d2xi

dt2
= f(xi−1, x i, x i+1)

M

K

X1U

M

K

X2

M

K

X3

M

K

X4

M

K

X5

Cascaded Mass-Spring Systems creates the Wave equation

This is almost exactly like the heat equation. When you write the node equation for mass 2, you get

Ms2x2 = Kx1 − 2Kx2 + Kx3

s2x2 = 


K

M


 x1 − 

2K

M


 x2 + 

K

M


 x3

which is exactly the same form as we got for the heat equation, except that the result is the second derivative of

x2 rather than the first derivative. This has a profound impact on how the system behaves.

For example, assume you have

30 nodes (30 finite elements) and

K/M = 50

Friction = 0.01 at each node

If you flick the input (x(0)) to launch a wave, then at t=2 seconds, the states look like the following:

t = 2 seconds. Wave traveling to the right

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 7 July 20, 2020

t = 5 seconds. Wave hits the right endpoint

t = 7 seconds. Reflection is now traveling to the left

In terms of a transfer function, this is really ugly.

There are 30 finite elements, each with two energy states (kinetic and potential energy)

The resulting system is 60th order

All 60 poles are on the jw axis - all 60 are dominant.

If you did find the transfer function and plot the step response, you would see how the right endpoint responds

(x(30)). If you run the following simulation, you see how all 30 points respond.

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 8 July 20, 2020

Wave.m

N = 30; % number of nodes

V = zeros(N,1);

dV = zeros(N,1);

t = 0;

dt = 0.01;

while(t < 100)

 if (t < 2) V0 = 100 * ((sin(0.5*pi*t))^2);

 else V0 = 0;

 end

 ddV(1) = 50*V0 - 100*V(1) + 50*V(2) - 0.01*dV(1);

 for i=2:N-1

 ddV(i) = 50*V(i-1) - 100*V(i) + 50*V(i+1) - 0.01*dV(i);

 end

 ddV(N) = 50*V(N-1) - 50*V(N) - 0.01*dV(N);

 for i=1:N

 dV(i) = dV(i) + ddV(i)*dt;

 V(i) = V(i) + dV(i)*dt;

 end

 t = t + dt;

 plot([0:N],[V0;V],'.-');

 ylim([-100,150]);

 pause(0.01);

 end

NDSU Mass & Spring Systems: The Wave Equation ECE 461

JSG 9 July 20, 2020

