
State-Space & Canonical Forms
State-Space is a matrix-based formulation for a system's dynamics. The standard form for the dynamics of a

linear system are

sX = AX + BU

Y = CX + DU

where Y is the system's output, U is the system's input, and X are 'dummy' states (termed internal states.) With

this formulation, the transfer function will be

X = (sI − A)−1BU

Y = 
C(sI − A)−1B + DU

MATLAB is a matrix language which has functions that let you find the transfer function of a system in

state-space form. It's much easier (and less prone to errors) if you express many systems in state-space form and

let MATLAB determine the transfer function. It's also an easier way to implement a system on a microcomputer.

MATLAB Commands

G = ss(A, B, C, D); input a system in state-space form

G = tf(num, den) input a system in transfer function form

G = zpk(z, p, k) input a system in zeros, poles, gain form

ss(G) determine A, B, C, D for system G (answer is not unique)

tf(G) determine the transfer function of system G

zpk(G) determine the zeros, poles, and gain of system G

Matrix Algebra

An nxm matrix has n rows and m columns. For example, a 2x3 matrix has 6 elements:

A2x3 =





a11 a12 a13

a21 a22 a23






Scalar Multiplication:

bA =





ba11 ba12 ba13

ba21 ba22 ba23






Matrix Addition:

Matrices with the same dimensions can be added:

A + B =





a11 a12 a13

a21 a22 a23




 +






b11 b12 b13

b21 b22 b23




 =






a11 + b11 a12 + b12 a13 + a13

a21 + b21 a22 + b22 a23 + b23






Matrix Multiplication:

NDSU State Space & Canonical Forms ECE 461/661

JSG 1 July 20, 2020

To multiply two matrices, the inner dimensions must match

Axy ⋅ Byz = Cxz






a11 a12 a13

a21 a22 a23















b11 b12

b21 b22

b31 b32









=





a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32






=





Σ a1xbx1 Σ a1xbx2

Σ a2xbx1 Σ a2xbx2






Matrix Inversion

I = the identity matrix = the matrix version of '1'A ⋅ A−1 = I =










1 0 0

0 1 0

0 0 1










For a 2x2 matrix,

A−1 =





a22

∆

−a12

∆
−a21

∆

a11

∆




 ∆ = a11a22 − a12a22

Placing a System in State-Space Form:

i) Write N equations for the N voltage nodes

ii) Solve for the highest derivative for each equation

iii) Rewrite in matrix form.

Example. The following differential equation describe the water level in a two-tank system. Write this in

state-space form and find the transfer function from U to Y.

dx1

dt
= x2 − x1 + 0.3u

dx2

dt
= x1 − 1.3x2

Write this as

sX = AX + BU

s





x1

x2




 =






−1 1

1 −1.3










x1

x2




 +






0.3

0




U

If x2 is the output,

NDSU State Space & Canonical Forms ECE 461/661

JSG 2 July 20, 2020

Y =  0 1 





x1

x2




 + [0]U

To find the transfer function in MATLAB,

A = [-1, 1; 1, -1.3]
B = [0.3; 0]
C = [0, 1]
D = 0;

G = ss(A, B, C, D)
tf(G)

Transfer function:
 0.3

s^2 + 2.3 s + 0.3

Example: The temperature along the length of a metal bar are described by

sx1 = u − 2x1 + x2

sx2 = x1 − 2x2 + x3

sx3 = x2 − 2x3 + x2

sx4 = x3 − x4

Find the transfer function from U to X4.

Solution: Express this in state-space form

s













x1

x2

x3

x4













=













−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

























x1

x2

x3

x4













+













1

0

0

0












U

y =  0 0 0 1 













x1

x2

x3

x4













+ [0]U

Input this into MATLAB

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1];
B = [1;0;0;0];
C = [0,0,0,1];
D = 0;

G = ss(A,B,C,D);

NDSU State Space & Canonical Forms ECE 461/661

JSG 3 July 20, 2020

tf(G)

Transfer function:

 1

s^4 + 7 s^3 + 15 s^2 + 10 s + 1

or if you prefer factored form:

zpk(G)

Zero/pole/gain:
 1

(s+1) (s+2.347) (s+3.532) (s+0.1206)

Suppose you wanted to measure the average temperature of the bar. The only change is what you measure:

y =  0.25 0.25 0.25 0.25 













x1

x2

x3

x4













+ [0]U

C = [0.25,0.25,0.25,0.25];
D = 0;

G = ss(A,B,C,D);
tf(G)

Transfer function:

0.25 s^3 + 1.5 s^2 + 2.5 s + 1

s^4 + 7 s^3 + 15 s^2 + 10 s + 1

or if you prefer factored form:

» zpk(G)

Zero/pole/gain:

 0.25 (s+3.414) (s+2) (s+0.5858)

(s+1) (s+2.347) (s+3.532) (s+0.1206)

note: You don't have to use MATLAB. You can also write this using LaPlace notation as four equations for four

unknowns. Using algebra (and about three hours), you can simplify and get the same answer.

NDSU State Space & Canonical Forms ECE 461/661

JSG 4 July 20, 2020

Canonical Forms

Objective:

Give a block-diagram representation for a transfer function in various canonical forms

Give a state-space representation for a transfer function in various canonical forms

State-space is the way MATLAB and other programs represent transfer functions. One feature of state-space is

there are an infinite number of ways to represent the same transfer function. Some forms have standard names -

these are termed 'canonical forms.'

Problem: Place the following system in state-space form

Y = 


c3s3+c2s2+c1s+c0

s4+b3s3+b2s2+b1s+b0


U

Controller Canonical Form:

Change the problem to

X = 


1

s4+b3s3+b2s2+b1s+b0


U

Y = (c3s3 + c2s2 + c1s + c0)X

Solve for the highest derivative of X:

s4X = U − b3s3X + b2s2X + b1sX + b0X

Integrate s4X four times to get X: (note: x' means)
dx

dt

1

s

1

s

1

s
1

s

xx'x''x'''x''''

Create s4X from U and its derivatives

1

s

1

s

1

s
1

s

xx'x''x'''x''''

-b0

-b1

-b2

-b3

Create Y from the derivatives of X:

NDSU State Space & Canonical Forms ECE 461/661

JSG 5 July 20, 2020

1

s

1

s

1

s
1

s

xx'x''x'''x''''

-b0

-b1

-b2

-b3

c0

c1

c2

c3

Y

U

X1X2X3X4

Controller Canonical Form

State Space Form: Define a state to be the output of each integrator (shown in red above). This gives

sX1 = X2

sX2 = X3

sX3 = X4

sX4 = U − b3X4 + b2X3 + b1X2 + b0X1

or in matrix form:

s













X1

X2

X3

X4













=













0 1 0 0

0 0 1 0

0 0 0 1

−b0 −b1 −b2 −b3

























X1

X2

X3

X4













+













0

0

0

1












U

Y =  c0 c1 c2 c3 













X1

X2

X3

X4













+ [0]U

Note that you can write this state-space model by inspection from the transfer function:

Y = 


c3s3+c2s2+c1s+c0

s4+b3s3+b2s2+b1s+b0


U

This is what MATLAB uses to store transfer functions since it's so easy to determine once you know the transfer

function. It's also easy to convert from controller canonical form to the transfer function.

This form is called 'controller form' since the input, U, can set the states at will. For example, if

u(t) = δ(t)

the output of the first integrator jumps to 1 at t=0+. If

NDSU State Space & Canonical Forms ECE 461/661

JSG 6 July 20, 2020

u(t) = d

dt
(δ(t))

(termed a doublet), the output of the second integrator jumps to 1 at t=0+.

This form also has some of the worst numerical properties. Nothing is free.

Observer Canonical Form:

If you transpose controller canonical form you get observer form:

Ao = (Ac)
T

Bo = (Cc)T

Co = (Bc)T

or

s













X1

X2

X3

X4













=













0 0 0 −b0

1 0 0 −b1

0 1 0 −b2

0 0 1 −b3

























X1

X2

X3

X4













+













c0

c1

c2

c3












U

Y =  0 0 0 1 













X1

X2

X3

X4













+ [0]U

The block-diagram version looks like the following:

sX1 = −b0X4 + c0U

etc.

1

s

1

s

1

s

1

s

X1 X2 X3 X4

c0 c1 c2 c3

-b0 -b1 -b2 -b3

Y

U

Observer Canonical Form

NDSU State Space & Canonical Forms ECE 461/661

JSG 7 July 20, 2020

The nice thing about observer canonical form is you can determine all four states by measuring the output, Y, and

its derivatives.

Cascade Form:

Assume the transfer function factors as

Y = 


a3s3+a2s2+a1s+a0

(s+p1)(s+p2)(s+p3)(s+p4)

U

Treat this as four systems cascaded:

X1 = 


1

s+p1


U

X2 = 


1

s+p2


X1

X3 = 


1

s+p3


X2

X4 = 


1

s+p4


X3

The output is then

y = c1X1 + c2X2 + c3X3 + c4X4

Putting this over a common denominator gives

Y = 


c4+c3(s+p4)+c2(s+p4)(s+p3)+c1(s+p4)(s+p3)(s+p2)

(s+p1)(s+p2)(s+p3)(s+p4)

U

The block diagram model looks like the following:

U Y1

s

1

s
1

s

1

s

-p1 -p2 -p3 -p4

c4

c3

c2

c1

x1 x2 x3 x4

The state-space model is:

NDSU State Space & Canonical Forms ECE 461/661

JSG 8 July 20, 2020

s













X1

X2

X3

X4













=













−p1 0 0 0

1 −p2 0 0

0 1 −p3 0

0 0 1 −p4

























X1

X2

X3

X4













+













1

0

0

0












U

Y =  c1 c2 c3 c3 













X1

X2

X3

X4













+ [0]U

The nice thing about cascade form is it has very good numerical properties. You can also determine the poles of

the system by inspection: they're the values on the diagonal.

Jordan Form:

Assume the transfer function can be expressed using partial fractions as

Y = 




c1

s+p1


 + 

c2

s+p2


 + 

c3

s+p3


 + 

c4

s+p4




U

Treat this as four separate systems:

X1 = 


c1

s+p1


U

X2 = 


c2

s+p2


U

X3 = 


c3

s+p3


U

X4 = 


c4

s+p4


U

Y is then the sum of these four.

In block diagram form, Jordan form looks like the following:

NDSU State Space & Canonical Forms ECE 461/661

JSG 9 July 20, 2020

1

s

-p4

1

s

-p3

1

s

-p2

1

s

-p1

c1

c2

c3

c4

YU

X4

X3

X2

X1

In state-space, this looks like:

s













X1

X2

X3

X4













=













−p1 0 0 0

0 −p2 0 0

0 0 −p3 0

0 0 0 −p4

























X1

X2

X3

X4













+













c1

c2

c3

c4












U

Y =  1 1 1 1 













X1

X2

X3

X4













+ [0]U

NDSU State Space & Canonical Forms ECE 461/661

JSG 10 July 20, 2020

