
Connected Component Workbench

Connected Component Workbench is the software used to program Allen Bradley Mico-810 PLC's. Copies can be
obtained fom the following link:

http://www.rockwellautomation.com/global/products-technologies/connected-components/tools/workbench.page

Note that if you are using a Windows XP machine, you need an older version from a CD ROM. Please see the
instructor if this is you.

Notation

Inputs:

Connect COM-0 to -DC24 (0V) to enable inputs 0..3

Connect -DC24 to -DC24 to enable inputs 4..7

Inputs 0..3 are digital (0V = logic 0, 24V = logic 1)

Inputs 4..7 and digital (24V) or analog (0..10V), depending upon the input voltage

Constant Inputs:

Time:

T#300x

d = day

h = hour

m = minutes

s = seconds

ms = milliseconds

Binary: 2#

2#1001_0010 binary number 0x52

Hex: 16#

Decimal: 10#

Getting Started:

Start Connected Components Wizard. You should get the following screen

NDSU Connected Component Workbench ECE 461

JSG 1 rev August 13, 2016

Select the PLC we're using: 2080-LC10-12QWB, and draag it left to the Program window. Double click on
Programs and select New Ladder Diagram:

This should give you the following display: an empty program

NDSU Connected Component Workbench ECE 461

JSG 2 rev August 13, 2016

Program elements are shown in the lower right corner: these are drag and drop elements:

Rung: Add a new line to the program

Outputs: These must be placed on the far right of the ladder diagram

Direct Coil: Boolean variable. When energised, the variable becomes true. If the variable is an output relay,
the relay closes. When de-energised, the coil opens. Can also be an internal state.

Reverse Coil: Booleam vairable. Energised is open (true), de-energised is closed (false).

Set Coil: When energised, the coil closes and remains closed.

Reset Coil: When energised, the coil opens and remains open.

Pulse Rising Edge Coil: The coil closes momentarilly when the output is energised (rising edge)

Pulse Falling Edge Coil: The coil opens momentarilly when the output is de-energised (falling edge)

Inputs: These must be placed on the left side of the ladder diagram

Direct Contact: True means the switch closes, false means the switch is open.

Reverse Contact: Closed when false, open when true.

Pulse Rising Edge Contact: Momentarilly closes when the signal goes high (rising edge)

Pules Falling Edge Contact: Momentarilly closes when the signal goes low (falling edge)

Blocks:

100+ operations, such as a time delay. More on this later.

NDSU Connected Component Workbench ECE 461

JSG 3 rev August 13, 2016

Example Code:

Write a prorgram so that the red LED turns on whenever you press button 0.

Function:

Y = A

Inputs:

A = IN0

Output:

Y = OUT0

Program:

Click on the Input Coil icon and drag it to the left of the ladder diagram. To define this input as IN0, double click
on the coil and select I/O Micro 810

This lets you assign a coil to the input pins and output relays:

_IO_EM_DO_0x Digital Output #x (relay output x)

_IO_EM_DI_0x Digital Input #x (input pin x)

Select Digital Input 0 for pin #0. You can give it an Alian (name) if you like.

Click on the Output Coil icon and drag it to the right side of the display and assign it to Digital Output 0.

NDSU Connected Component Workbench ECE 461

JSG 4 rev August 13, 2016

Your program should then look like the following:

Compilation:

Click on the Build icon. This translates the ladder diagram to machine code. With any luck. you'll get a successful
message:

Program:

Connect the Micro-810 to a PC through the USB port. When you click on the Download icon, you'll get a
message asking which device. Select the USB port and Micro810

It will then ask if you want to halt the current program:

NDSU Connected Component Workbench ECE 461

JSG 5 rev August 13, 2016

say yes. About 30 seconds later, after the program is downloaded, it will ask if you want to restart the (new)
program. Say yes.

At this point, the program should be running: when you press button 0, the red light turns on.

Example 2: Two On-Off Switches

Write a program with the following functionality:

IN0: Turn on the red LED (out 0)

IN1: Turn off the red LED

IN2: Turn on the yellow LED (out 1)

IN3: Turn off the yellow LED

Create four rungs by dragging the rung icon left. Add four input coils and four output coils as follows:

NDSU Connected Component Workbench ECE 461

JSG 6 rev August 13, 2016

Example 3: Logical AND and OR

Write a program which

Turns on the red LED when button 0 and 1 are pressed, and

Turns on the yellow LED when buttons 2 or 3 are pressed.

Program: To create the OR function, drag the Branch inco left and place in in the second rung. Add to Direct
Contacts for input 2 and 3.

Note that

Two switches in series is an AND function

Two switches in parallel is an OR function

Combinational Logic on a PLC

From ECE 275, if you can implement AND, OR, and NOT functions, you can implement any truth table. One
way to do this is using Karnough maps.

Example: Write a program which

Turns off all LEDs when no buttons are pressed

Turns on the blue LED (DO3) when one or more buttons are pushed

Turns on the green LED (DO2) when two or more buttons are pressed, and

Turns on the yellow LED (DO1) when three or more buttons are pressed

Assume only buttons 0 / 1 / 2 are used and defined as

A = input 0

B = input 1

C = input 2

First, set up a Karnough map for each output:

NDSU Connected Component Workbench ECE 461

JSG 7 rev August 13, 2016

A

BC

0

1

00 01 11 10

A

BC

0

1

00 01 11 10

A

BC

0

1

00 01 11 10

Blue: 1 or more Green: 2 or more Yellow: 3 or more

0 1 1 1

1 1 1 1

0 0 1 0

0 1 1 1

0 0 0 0

0 0 1 0

Next, circle the ones in groups of 2n (shown in red above). This gives

Blue  A  B C

Green  AB  AC  BC

Yellow  ABC

Implement this in Ladder Logic. In Connected Component Workbench, the code will look like the following:

Note that there are other solutions. For example, you could create a local variable for when one, two, or three
buttons are pressed - with the following logic for each:

One  ABC  ABC  ABC

Two  ABC  ABC  ABC

Three  ABC

The blue LED (one or more) is on if any of these three are true

NDSU Connected Component Workbench ECE 461

JSG 8 rev August 13, 2016

The green LED (two or more) is on if Two or Three is true

The yellow LED is on if three is true

Create a local variable

Then use this local variable along with logic for one, two, or three buttons being pressed

NDSU Connected Component Workbench ECE 461

JSG 9 rev August 13, 2016

Debug Feature:

Once you download your code, click the Debug button (F5)

This will then show you on the screen which lines of code are turned on as you press the buttons. It helps
understand what is going on (and we'll use this feature a lot).

For example, when you press A and B, the display under Debug mode looks like the following:

Red shows which paths are turned on (true)

NDSU Connected Component Workbench ECE 461

JSG 10 rev August 13, 2016

