
FIR Filters
NDSU ECE 376

Lecture #29

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Finite Impulse Response (FIR) Filter Design:

Time and frequency are related:

f(t) =
1

j2π ∫−j∞

+j∞
F(s)est ⋅ ds

F(s) = ∫−∞

+∞

f(t)estdt

If two linear filters have identical impulse responses, the two filters will

have the same frequency response.

It really doesn't matter how you generate the impulse response of a filter. All

that matters is the result.

Example:

Y = 


1

z−0.9

X

Y = 
1 +

0.9
z +

0.92

z2
+

0.93

z3
+ ...X

or

y(k) = (0.9)ku(k)

Implementing G(z)

IIR Filter (recursive filter)
zY = 0.9*Y + X

 Y = zY

FIR Filter

for (i=100; i>0; i--) X[i] = X[i-1];

X[0] = a2d_read(0);

Y = 0;

for (i=0; i<=100; i++)

 Y += W[i] * X[i];

// W[i] = 0.9^i

Result

A Finite Impulse Response Filter

Remembers the previous N values of the input (X),

Combines these previous N inputs with weightings corresponding to the impulse

response of the filter you want to implement,

Thus generating your desired filter.

The neat thing about FIR filters is

If you know the impulse response of the filter you want,

You know how to implement this filter.

Example: Ideal Low-Pass Filter:

Design a filter with the gain of

F(s) =





1 ω < 1

0 otherwise

Solution: Find the impulse response

f(t) =
1

j2π ∫−j∞

+j∞
F(s)est ⋅ ds

.

..

f(t) = 


1

2π






sin(t)

t



Problems:

Non-Causal

Goes from .−∞ < t < ∞

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
-0.04

0

0.04

0.08

0.12

0.16

Time (seconds)

f(t)

Approximations:

Truncate for -20 seconds < t < +20 seconds

Delay 20 seconds

Results in a causal filter (with a 20 second delay)

-20 -10 0 10 20 30 40 50 60
-0.04

0

0.04

0.08

0.12

0.16

Time (seconds)

f(t)

Frequency Response:

The frequency response will be equal to

G(s) = Σ W(i) ⋅ z−i

where

z = e jωT

MATLAB Code:
t = [-20:T:20]' + 1e-6;

f = 1 / (2*pi) * sin(t) ./ t ;

w = [0:0.01:3]';
s = j*w;

T = 0.4;

z = exp(s*T);

G = 0*w;

for i=1:length(f)

 G = G + f(i) * (z .^ (-i));

 end

plot(w,abs(G))

f(t) = 


1

2π






sin(t)

t



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

On the plus side:

This is a very good low-pass filter, closely approximating an ideal low-pass filter.

If you want a better filter, extend the tails of the impulse response

This filter is very easy to implement: all you need is to know the impulse response

of your filter

On the minus side:

It involves remembering 400 previous inputs (requiring more RAM than is available

of a PIC).

It involves 400 floating point multiplies and 400 floating point additions

It would take a PIC about 0.8 seconds to compute y(k) each sample and you only

have 0.01 second to do so.

In short, a FIR filter is not a good option for a PIC. A DSP (digital signal

processor) is designed specifically for this type of filter.

Example 2:

Design an FIR low-pass filter with a corner at 2 rad/sec

Solution:

If you double the bandwidth, you double the speed of the filter

Speed up time 2x

corner = 1 rad/secf(t) = 


1

2π






sin(t)

t



corner = 2 rad/secf(t) = 2
1

2π






sin(2t)

2t



f(t) = 


1

2π






sin(2t)

t



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

Example 3:

Design a band-pass filter

F(s) =





1 4 < ω < 6

0 otherwise

Solution: Subtract

f(t) = Low-Pass Filter with a corner at 6 rad/sec

- Low Pass Filter with a corner at 4 rad/sec

f(t) = 


1

2π






sin(6t)

t

 − 

1

2π






sin(4t)

t



f(t) = 


1

2π






sin(6t)

t

 − 

1

2π






sin(4t)

t



0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

FIR Summary

If you know the impulse response of your filter, you can implement it with an FIR

filter

FIR filters are easy to design

FIR filters are easy to implement

But....

The require a LOT of floating-point computations

PIC processors are not designed for this

DSP processors are designed for this (ECE 444: Digital Signal Processors)

