FIR Filters

NDSU ECE 376
Lecture #29
Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Finite Impulse Response (FIR) Filter Design:

Time and frequency are related:
_ L[st
) =5z | Fls)e™ - ds
+o0
Fs)= [fine"ds

If two linear filters have identical impulse responses, the two filters will
have the same frequency response.

It really doesn't matter how you generate the impulse response of a filter. All
that matters 1s the result.

Example:

. 1
Y= (z—0.9) X

Y = (1 +09 1097 097,)X

3

Z2 <

or

y(k) = (0.9)*u(k)

= 0.6

Implementing G(z)

IIR Filter (recursive filter)

zY = 0.9*Y + X
Y = zY

FIR Filter

for (1=100; 1>0; i--) X[1] = X[i-1];
X[0] = a2d_read(0);

Y = 0;
for (i=0; i<=100; i++)
wlii] * X[1];

’
1
Y +

// W[i] = 0.971

Result
A Finite Impulse Response Filter

« Remembers the previous N values of the input (X),

« Combines these previous N inputs with weightings corresponding to the impulse
response of the filter you want to implement,

« Thus generating your desired filter.

The neat thing about FIR filters 1s
« If you know the impulse response of the filter you want,

* You know how to implement this filter.

Example: Ideal Low-Pass Filter:
Design a filter with the gain of

1 lo| < 1
F(s) =
(5) { 0 otherwise

Solution: Find the impulse response

L[st
f(t)=j2—n g F(s)e® - ds

0= (1)

Problems:

« Non-Causal

e Goes from —oo < [< o0,

f(t)

0.16
0.12
0.08

0.04

O:Af\/\/\v/\/\/\/\ /\/\/\/\/\A,-\A

o4t e e i

Time (seconds)

Approximations:
« Truncate for -20 seconds < t < +20 seconds

« Delay 20 seconds
Results 1n a causal filter (with a 20 second delay)

£(t)

0.16
0.12
0.08

0.04

ol

-20 -10 0 10 20 30 40 50
Time (seconds)

Freqguency Response:
The frequency response will be equal to

G(s) =), W) -z

where
7= eloT
MATLAB Code:
t = [-20:T:20]" + 1le-o6;
f =1/ (2*pi) * sin(t) ./ t ;
w = [0:0.01:31";
s = J*w;
T = 0.4;
z = exp(s*T);
G = 0*w;
for i=1l:1length (f)

G =G+ £(i) * (z .7 (=1));
end
plot (w, abs (G))

0= (1)1

Gain
1.2

0 0.5 1 15 2 2.5 3
Frequency (rad/sec)

On the plus side:
« This is a very good low-pass filter, closely approximating an ideal low-pass filter.
- If you want a better filter, extend the tails of the impulse response

« This filter 1s very easy to implement: all you need is to know the impulse response
of your filter

On the minus side:

- It involves remembering 400 previous inputs (requiring more RAM than 1s available
of a PIC).

« It involves 400 floating point multiplies and 400 floating point additions

- It would take a PIC about 0.8 seconds to compute y(k) each sample and you only
have 0.01 second to do so.

In short, a FIR filter 1s not a good option for a PIC. A DSP (digital signal
processor) 1s designed specifically for this type of filter.

Example 2:

Design an FIR low-pass filter with a corner at 2 rad/sec

Solution:
« If you double the bandwidth, you double the speed of the filter
« Speed up time 2x

f(t) = (ﬁ) (Sir;(t)> corner = 1 rad/sec

(1) = 2(!) (Sin(zt)) corner = 2 rad/sec

o 2t

- (1) e

Gain
1.2

0 0.5 1 1.5 2 2.5 3
Frequency (rad/sec)

Example 3:
Design a band-pass filter

1 4<mw<6
F(s) =
(5) { 0 otherwise

Solution: Subtract
f(t) = Low-Pass Filter with a corner at 6 rad/sec

- Low Pass Filter with a corner at 4 rad/sec

03) - (&) (2

Gain

0 =(3)(

sin(6t)) (1>(Sin(4t))
t ~ \ 21 t

1.2

0.8
0.6
0.4

0.2

4 - 5
Frequency (rad/sec)

FIR Summary

« If you know the impulse response of your filter, you can implement it with an FIR
filter

 FIR filters are easy to design

 FIR filters are easy to implement

But....

« The require a LOT of floating-point computations
« PIC processors are not designed for this

« DSP processors are designed for this (ECE 444: Digital Signal Processors)

