
Filters in the z-Plane

NDSU ECE 376

Lecture #28

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Filters in the z-Plane

Given G(s), find G(z) so that

They both have the same step response, or

They both have the same frequency response.

G(s) G(z)

continuous time discrete-time

LaPlace Operator (s)

LaPlace Transforms assume

y(t) = est

giving
dy

dt
= s ⋅ est = sy

sY means 'the derivative of y(t)'

A transfer function, such as

Y = 


2s+3

s2+2s+10


X

is equivalent to

d2y

dt2
+ 2

dy

dt
+ 10y = 2dx

dt
+ 3x

z-Operator

z-Transforms assume

y(k) = zk

giving

y(k + 1) = zk+1 = z ⋅ zk = zy(k)

zY means 'the next value of y(k)

A transfer function, such as

Y = 


2z+3

z2+2z+10


X

means
y(k+2) + 2y(k+1) + 10y(k) = 2x(k+1) + 3x(k)

s to z-Plane Relationship

Assume

t = kT

where

k is the sample number

T is the sampling time (one sample every T seconds)

Substituting

y(kT) = eskT = (esT)
k

= (z)k

z = esT

Filter Analysis in the s-Plane

Find y(t)

Y = 


2

s+3

X

x(t) = 4 cos(5t) + 6 sin(5t)

Solution:

Y = 


2

s+3



s=j5
(4 − j6)

Y = −1.059 − j2.235

y(t) = −1.059 cos(5t) + 2.235 sin(5t)

s-Plane: Sine-wave input produces a sine-wave output

Filter Analysis in the z-Plane

z = esT = e jωT

Find y(t). Assume T = 0.01 second

Y = 


0.2

z−0.9

X

x(t) = 4 cos(5t) + 6 sin(5t)

Solution: Determine the gain at z = e j5T

Y = 


0.2

z−0.9



z=ej0.05
(4 − j6)

Y = −2.575 − j1.548

y(t) = −2.575 cos(5t) + 1.548 sin(5t)

z-Plane: Sine wave input produces a sine-wave output

Converting G(s) to G(z)

Poles convert as z = esT

Zeros convert as z = esT

Add a gain to match the gain at one frequency (typically DC)

Example 1: Convert to the z-plane. Assume T = 0.01

G(s) = 


30

(s+2)(s+10)




Solution: Convert the poles to the z-plane

s = -2 z = e−2T = 0.9802

s = -10 z = e−10T = 0.9048

so G(z) = 


k

(z−0.9802)(z−0.9048)




To find k, match the gain at DC




30

(s+2)(s+10)




s=0

= 


k

(z−0.9802)(z−0.9048)




z=1

= 1.5

k = 0.002827




30

(s+2)(s+10)


 ≈ 


0.002827

(z−0.9802)(z−0.9048)




G(s) and G(z) have the same step response

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

G(s)

G(z)

G(s) and G(z) have the same frequency response

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frequency (rad/sec)

Gain

G(s)

G(z)

Implementing G(z)

Write a program to implement

Y = 


0.2(z−0.9)

z3−1.3z2+1.6z+0.6


X

Cross multiply

(z3 − 1.3z2 + 1.6z + 0.6)Y = 0.2(z − 0.9)X

Write the difference equation

y(k+3) - 1.3y(k+2) + 1.6y(k+1) + 0.6y(k) =

 0.2(x(k+1) - 0.9x(k))

Solve for the highest value of y(k+2)
y(k+3) = 1.3y(k+2) - 1.6y(k+1) - 0.6y(k) +

 0.2(x(k+1) - 0.9x(k))

Time shift (change of variable: k+3 = k')

y(k') = 1.3y(k'-1) - 1.6y(k'-2) - 0.6y(k'-3)

 + 0.2(x(k'-2) - 0.9x(k'-3))

This is essentially the program

Y = 


0.2(z−0.9)

z3−1.3z2+1.6z+0.6


X

while(1) {

 x3 = x2;

 x2 = x1;

 x1 = x0;

 x0 = A2D_Read(0);

 y3 = y2;

 y2 = y1;

 y1 = y0;

 y0 = 1.3*y1 - 1.6*y2 - 0.6*y3 + 0.2*(x2 - 0.9*x3);

 D2A(y0);

 Wait_T();

 }

Note

If you want to change the filter, you just change one line of code

If you want complex poles or zeros, just choose coefficients that have complex roots

Example 2: Design a digital low-pass filter

G(jω) ≈





1 ω < 10

0 ω > 10

From lecture #26, a 5th-order Chebychev filter is

 G(s) =





4.8⋅7.62⋅10.62

(s+4.8)s+7.6∠±59.30 


s+10.6∠±820 








0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

n = 2

n = 3

n = 4

n = 5

Convert G(s) to G(z)

G(s) =





4.8⋅7.62⋅10.62

(s+4.8)s+7.6∠±59.30 


s+10.6∠±820 








Assume T = 10ms

Convert using z = esT

s = −4.8 z = 0.9531

s = −7.6∠ ± 59.30 z = 0.9599 ± j0.0626

s = −10.6∠ ± 820 z = 0.9799 ± j0.1032

so

G(z) = 


k

(z−0.9531)(z−0.9599±j0.0626)(z−0.9799±j0.1032)




Pick 'k' s that the DC gain is 1.000




k

(z−0.9531)(z−0.9599±j0.0626)(z−0.9799±j0.1032)




z=1

= 1

k = 2.8797 ⋅ 10−6

so

G(z) = 


2.8797⋅10−6

(z−0.9531)(z−0.9599±j0.0626)(z−0.9799±j0.1032)




In Matlab:

s1 = -4.8;

s2 = -7.6*exp(j*59.3*pi/180);

s3 = conj(s2);

s4 = -10.6*exp(j*82*pi/180);

s5 = conj(s4);

ks = abs(prod([s1,s2,s3,s4,s5]));

T=0.01;

z1 = exp(s1*T);

z2 = exp(s2*T);

z3 = exp(s3*T);

z4 = exp(s4*T);

z5 = exp(s5*T);

kz = abs(prod([z1-1,z2-1,z3-1,z4-1,z5-1]));

w = [0:0.01:30]';

s = j*w;

z = exp(s*T);

Gs = ks ./ ((s-s1).*(s-s2).*(s-s3).*(s-s4).*(s-s5));

Gz = kz ./ ((z-z1).*(z-z2).*(z-z3).*(z-z4).*(z-z5));

plot(w,abs(Gs),'b',w,abs(Gz),'r');

Summary:

Converting an analog filter, G(s), to a digital filter, G(z), is fairly easy

Zeros convert as z = esT

Poles convert at z = esT

Pick 'k' to match the DC gain

Once you have the digital filter, it's fairly straight forward to write the

corresponding code

1st and 2nd-order filters are easier to code and have better numerical properties

Split up the 5th order filter into cascaded 1st & 2nd order filters

G(z) = 


0.0469

z−0.9531





0.0056

z−0.9599±j0.0626





0.0111

z−0.9799±j0.1032



