Zz-Transforms

NDSU ECE 376
Lecture #27
Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Introduction:

Anything you can do in software you can do in hardware, and visa versa.

In Circuits II and Electronics II, we deisgn filtes in the s-plane. These include
« RC low-pass filters,
« RLC band-pass filters, and
« Active filters

To describe these filters, differential equations are used. This results 1n
transfer functions in 's' where

100k Ri 100k Ro

sY “ “
means
the derivative of y(t) x ¥ /- A A
T T T

Digital Filters

With a microprocessor, you
« Samples the error every T seconds
« The sampled signal is sent through an analog to digital (A/D) converter
« A program on the microcontroller computes the output (software), and then

 The output of the microcontroller is sent to a digital to analog (D/A) converter,
producing y(t)

AD (——» uP ———» DA —»

Advantages of Digital Filters
« Code that ran yesterday should also run today.
- DC offsetts don't exist in software. Zero plus zero 1s zero.
- If you want a more complex controller, you just add lines of code.

- If you want to change the controller, you just download a new program.

Problem:

- LaPlace transforms don't work well when describing software

Sample Code

while (1) {
k =k + 1; // k = iteration number
x1 = x0; // x(k=1)
x0 = A2D_Read (0); // read in x(k) from the A/D
vl = yO0; // vy (k=1)
v0 =yl + 0.2*(x0 - 0.9*x1);

Wait_10ms () ;

}
This requires a difference equation

y(k) = y(k — 1)+ 0.2(x(k) — 0.9x(k — 1))

LaPlace Transforms
Assume

y=e"
then

dy

Ezs'eStst

This turns differential equations into transfer functions in 's'

+
Y: (28S 3)X
s“+7s5+12

means

d’y = ~dy _ odx
ﬁ+75+12y—8dt+3x

z-Transform

Assume a sampling rate T
t=kT
y(t) = y(kT) = y(k) =z

Then
yk+1)=z""=7-z28=7-y(k)

'zY' means "the next value of Y"

This in turn converts difference equations into algebraic equations in z.

Implementing K(z) in Software
Y = G(Z)X: (a2z2+a1Z+a0)X

Z3+b2Z2+b1Z+b()

1) Cross multiply:
(Z3 + szz +biz+ b())YZ (dzZz +a1z7+ d())X

11) Convert back to the time domain, noting that zY means y(k+1):
yk+3)+byy(k+2)+b1y(k+1)+boy(k) =arx(k+2)+aix(k+1)+aox(k)

or
y(k)+boy(k—1)+b1y(k—2)+boy(k—3) =axx(k—1)+ax(k—2)+aox(k—3)

111) Solve for y(k)
y(k) ==byy(k—1)—b1y(k—2)—boy(k—3)+arxx(k— 1) +ax(k—2) + aox(k—3)

1v) Write this 1n code:

while (1) {
X3 = X2; // x(k=3)
x2 = x1; // x(k=2)
x1 = x0; // x(k-1)
x0 = A2D _Read(0); // read x(k) from the A/D
v3 = y2; // y (k=3
y2 = vyl; // vy (k=2)
yl = y0; // v (k-1

y0 = -b2*yl - bl*y2 - bO*y3 + a2*x1l + al*x2 + a0*x3;
D2A (yO0) ; // output y(k) to the D/A converter
Wait_ 10ms () ;

}

Example 2: Implement the following digital filter (T = 10ms)

[0.2z(z-0.9)
Y= ((Z—l)(z—0.5)> X

Solution: Multiply it out

0.2(z2-0.9
Yz(z“ ZQX
z%—1.5z4+0.5

Cross multiply and solve for the highest power of zY
(z2—1.5z+0.5)Y=0.2(z> — 0.92)X
22Y=1.5z-0.5Y+0.2(z> - 0.92)X

meaning
y(k) =1.5y(k—1)—0.5y(k—2) + 0.2(x(k) — 0.9x(k — 1))

In code, only one line changes

while (1) {
x2 = x1; // x(k=2)
x1 = x0; // x(k-1)

x0 = A2D_Read(0); // read in x(k) from the A/D

y2 = yl; /]y (k=2)
yl = vy0; // y (k=1
y0O = -1.5*yl +0.5*y2 + 0.2*(x0 - 0.9*x1),;

Wait_ 10ms () ;

Note:

- Filters 1n the z-domain can be implemented exactly in software. That isn't true in
the LaPlace domain.

« To change the filter, you just change one line of code. That's much easier than
building a new op-amp filter.

- Complex poles and zeros are not a problem in the z-domain. All you care about are
the coefficients in the numerator and denominator polynomials.

« If you have a 3rd-order filter, you need to remember the 3 previous values of the
inputs and outputs. A 4th-order filter remembers the 4 previous values.

One other important thing to note:

« In the s-domain, we don't like to have more zeros than poles. More zeros than poles
means you're differentiating the input. This tends to create a noise amplifier.

« In the z-domain, you cannot have more zeros than poles. More zeros than poles
means you're using future values of the input - which I don't know how to do.

Also also

» You have to have integer powers of s. s"°Y means "the half-derivative of Y". I
have no idea what a half-derivative is. s"*Y doesn't make sense.

» You have to have integer powers of z. z"*Y means "the value of Y next time you
half-call the subroutine.”" I know how to call a subroutine one time. I know how to
call it two times. I don't know how to call a subroutine half a time. z"*Y doesn't
make sense either.

Find the response of G(z) for a sinusoidal input

LaPlace assumes

(1) = e
It

t=kT
then

y(KT) = ™!
or

k
y(k) = (e*")
This 1s 1dentical to the assumption behind z-transforms.

sT

z=¢e s — jO 7=/t

(note: TI calculators need to be 1n radian mode for this to work.)

Find y(t) given G(s):

_ 20
Y= ((s+1)(s+5))X

where
x(t) = 3 sin(4¢)

Solution: Evaluate at s = j4

_(__20 o ,
r'= ((S+1)(S+5)> o 4(0 —j3) =-2.066 +0.947

meaning
y(1) =—=2.066 cos(4t) — 0.947 sin(41)

Find y(t) given G(z) (T = 10ms)

. 0.02
Y= <(Z—O.9)(ZZ—O.8)> X
x(t) = 3 sin(4¢)

Solution: Evaluate at

s=j4
z=elT =% =1,2.291°
. 0.02z) — 3
Y= ((Z_O_g)(z_o.g)) gy (073 = 142322366

meaning
y(t) =—1.423 cos(4t) + 2.366 sin(41)

You can verify this in VisSim:

2y SX [>‘|'D22 —LY

22-17z+.72

) 0 25 5 75 1 1.25 15 175 2 225 25 275 3
Time (sec)

Table of z-transforms

If you want to find the output of a filter G(s) with a step input, you use
LaPlace transforms along with a table of LaPlace transforms and partial
fraction expansion.

Similarly, i1f you want to find the output of a filter G(z) with a step input, you
use z-transforms along with a table of z-transforms and partial fraction
expansion.

i) Delta Function o(k). The discrete-time delta function is

S(k):{l k=0

0O otherwise

K 0 1 2 3 4 5 6
delta(k) 1 0 0 0 0 0 0

The z-transform of a delta function 1s '1', just like the s-domain.

11) Unit Step: The unit step 1s

1 k=0
k) =
u(k) {() otherwise

It's z-transform can be deriveds as follows. The unit step is:

K 0 1 2 3 4 5

u(k) 1 1 1 1 1 1

(1/2)*u(k) 0 1 1 1 1 1
Subtract

(1-1/z)u(k) 1 0 0 0 0 0

So,

(1 - %) u(k) = (;1) u(k) =1
u(k) ==

111) Decaying Exponential. Let
x(k) = a*u(k)

K 0 1
X(K) 1 a
a*(1/z)*x 0 a
Subtract
(1-a/z)x 1 0

SO
(1-9X = (FHX =1

X=(z2)

These let you create a table of z-transforms like we had in the s-domain:

function y(K) Y(z)
delta S(k) 1
unit step u(k) (L>
z—1
decaying exponential aku(k) (z—ia)

damped sinewave

2b - a* - cos (kO + 0) - u(k)

((bLO)z
7—(aZ0)

(b£L-0)z
) T (Z—(al—ﬂ))

Time Response in the z-Domain

Find y(t) assuming x(t) 1s a unit step:

. 0.2z
Y= ((Z—O.9)(z—0.5)> X

1) Replace X(z) with the z-transform of a step

. 0.2z Z
Y= ((Z—O.9)(z—0.5)> (Z—l)

11) Use partial fractions

_ 0.2z ({4 45 0.5
Y= ((Z—l)(z—0.9)(z—0.5)> L= ((z—l) T (z—0.9) T (z—O.S)) <

111) Now apply the table entries
y(k)=4-4.5-(0.9+0.5-(0.5)" k>=0

Complex Poles: Find the step response for:

. 0.2z
r= ((z—OQAlOO) (z—0.94—100)] X

1) Replace X with its z-transforrm (a unit step)

Yy = 0.2z (Z)
(2-0.9£100) (:-09.24-100))\~
11) Factor our a z and use partial fractions
Y = ((5.355) n (2.984153.97(’) n (2.984—153.970)>
S\ 2 z-0.9.£10° —0.92-100))%
111) Convert back to time using the table of z-transforms
y(k) =5.355+4.859 - (0.9)" - cos (10Y - k—153.97Y)

k>=0

Time Value of Money

You can also solve time-value of money problems using z-transforms.

Assume you borrow $100,000 for a house. How much do you have to pay
each month to pay off the loan in 10 years?

« Assume 6% interest per year (0.5% per month).

Solution: Let x(k) be how much money you owe today. The amount you owe
next month, x(k+1), 1s

x(k+ 1) =1.005x(k) — p + X(0) - o(k)

where p' 1s your monthly payment starting at k=1. (a step delayed by one
sample). Converting to the z-domain

zX = 1.005X — p(z_il) (l) +X(0)
X = 1.005X - p(z_%) +X(0)

(z—1.005)X = X(0) _p(z_%)

_ [_X© |\ 1
X= (z—l.OOS) p ((z—l)(z—l.OOS))

Using partial fractions
_ 1
X = (z—foos)X(O) —Pp Z((z—l)(z—l.OOS))

X = (i) X0+ pe((22) - (22))

Converting back to the time domain
zx(k) = 1.005%X(0) — 200p(1.005% — 1)u(k)

Divide by z (delay one sample)
x(k) = 1.005%1X(0) — 200p(1.005%! — 1)u(k— 1)

After 120 payments (10 years), the balance should be zero
x(k) = 1.005%1X(0) — 200p(1.005%1 — 1)u(k— 1)
x(121) =0=9$181,939 —-200p(0.8194)
p="5%1110.02

Your monthly payments are $1,110.02 starting at month #1 and continuing for
120 payments.

If you stretch this out to 30 years (k = 360 payments), the monthly payment
becomes

¥(361) = 0 = $602, 257 — 200p(5.0226)
p =$599.55

Note: Paying off the loan over a time span 3 times longer
« Reduces the monthly payments by only 46% less, and
- Increases the total amount you'll pay on the loan from $133,224 to $215,838.

Also also: That's pretty much all a business —
calculator 1s: a calculator which does Financlal Cakculaor
z-transforms where the keys are renamed

 Interest rate
- 1nitial loan value, and

« number of payments

