
z-Transforms
NDSU ECE 376

Lecture #27

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Introduction:

Anything you can do in software you can do in hardware, and visa versa.

In Circuits II and Electronics II, we deisgn filtes in the s-plane. These include

RC low-pass filters,

RLC band-pass filters, and

Active filters

To describe these filters, differential equations are used. This results in
transfer functions in 's' where

sY

means

the derivative of y(t) +

-

+

-

100k 100k

100k R1

C1 C1

100k 100k

100k R2

C2 C2

X

aY

Digital Filters

With a microprocessor, you

Samples the error every T seconds

The sampled signal is sent through an analog to digital (A/D) converter

A program on the microcontroller computes the output (software), and then

The output of the microcontroller is sent to a digital to analog (D/A) converter,
producing y(t)

x(t) x(k)
A/D uP D/A

y(k) y(t)

sample

T

Advantages of Digital Filters

Code that ran yesterday should also run today.

DC offsetts don't exist in software. Zero plus zero is zero.

If you want a more complex controller, you just add lines of code.

If you want to change the controller, you just download a new program.

Problem:

LaPlace transforms don't work well when describing software

Sample Code

while(1) {

 k = k + 1; // k = iteration number

 x1 = x0; // x(k-1)
 x0 = A2D_Read(0); // read in x(k) from the A/D

 y1 = y0; // y(k-1)
 y0 = y1 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

This requires a difference equation

y(k) = y(k − 1) + 0.2(x(k) − 0.9x(k − 1))

LaPlace Transforms

Assume

y = est

then
dy

dt
= s ⋅ est = sY

This turns differential equations into transfer functions in 's'

Y = 


8s+3

s2+7s+12


X

means
d2y

dt2
+ 7

dy

dt
+ 12y = 8dx

dt
+ 3x

z-Transform

Assume a sampling rate T

t = kT

y(t) = y(kT) = y(k) = zk

Then

y(k + 1) = zk+1 = z ⋅ zk = z ⋅ y(k)

'zY' means "the next value of Y"

 This in turn converts difference equations into algebraic equations in z.

Implementing K(z) in Software

Y = G(z)X = 


a2z2+a1z+a0

z3+b2z2+b1z+b0


X

i) Cross multiply:

(z3 + b2z2 + b1z + b0)Y = (a2z2 + a1z + a0)X

ii) Convert back to the time domain, noting that zY means y(k+1):

y(k + 3) + b2y(k + 2) + b1y(k + 1) + b0y(k) = a2x(k + 2) + a1x(k + 1) + a0x(k)

or

y(k) + b2y(k − 1) + b1y(k − 2) + b0y(k − 3) = a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

iii) Solve for y(k)

y(k) = −b2y(k − 1) − b1y(k − 2) − b0y(k − 3) + a2x(k − 1) + a1x(k − 2) + a0x(k − 3)

iv) Write this in code:

while(1) {

 x3 = x2; // x(k-3)
 x2 = x1; // x(k-2)
 x1 = x0; // x(k-1)
 x0 = A2D_Read(0); // read x(k) from the A/D

 y3 = y2; // y(k-3)
 y2 = y1; // y(k-2)
 y1 = y0; // y(k-1)

 y0 = -b2*y1 - b1*y2 - b0*y3 + a2*x1 + a1*x2 + a0*x3;

 D2A(y0); // output y(k) to the D/A converter
 Wait_10ms();
 }

Example 2: Implement the following digital filter (T = 10ms)

Y = 


0.2z(z−0.9)

(z−1)(z−0.5)

X

Solution: Multiply it out

Y = 


0.2(z2−0.9z)

z2−1.5z+0.5


X

Cross multiply and solve for the highest power of zY

(z2 − 1.5z + 0.5)Y = 0.2(z2 − 0.9z)X

z2Y = 1.5z − 0.5Y + 0.2(z2 − 0.9z)X

meaning

y(k) = 1.5y(k − 1) − 0.5y(k − 2) + 0.2(x(k) − 0.9x(k − 1))

In code, only one line changes

while(1) {

 x2 = x1; // x(k-2)
 x1 = x0; // x(k-1)
 x0 = A2D_Read(0); // read in x(k) from the A/D

 y2 = y1; // y(k-2)
 y1 = y0; // y(k-1)

 y0 = -1.5*y1 +0.5*y2 + 0.2*(x0 - 0.9*x1);

 Wait_10ms();

 }

Note:

Filters in the z-domain can be implemented exactly in software. That isn't true in
the LaPlace domain.

To change the filter, you just change one line of code. That's much easier than
building a new op-amp filter.

Complex poles and zeros are not a problem in the z-domain. All you care about are
the coefficients in the numerator and denominator polynomials.

If you have a 3rd-order filter, you need to remember the 3 previous values of the
inputs and outputs. A 4th-order filter remembers the 4 previous values.

One other important thing to note:

In the s-domain, we don't like to have more zeros than poles. More zeros than poles
means you're differentiating the input. This tends to create a noise amplifier.

In the z-domain, you cannot have more zeros than poles. More zeros than poles
means you're using future values of the input - which I don't know how to do.

Also also

You have to have integer powers of s. s1/2Y means "the half-derivative of Y". I
have no idea what a half-derivative is. s1/2Y doesn't make sense.

You have to have integer powers of z. z1/2Y means "the value of Y next time you
half-call the subroutine." I know how to call a subroutine one time. I know how to
call it two times. I don't know how to call a subroutine half a time. z1/2Y doesn't
make sense either.

Find the response of G(z) for a sinusoidal input

LaPlace assumes

y(t) = est

If

t = kT

then

y(kT) = eskT

or

y(k) = (esT)
k

This is identical to the assumption behind z-transforms.

z = esT s → jω z = e jωT

(note: TI calculators need to be in radian mode for this to work.)

Find y(t) given G(s):

Y = 


20

(s+1)(s+5)

X

where

x(t) = 3 sin(4t)

Solution: Evaluate at s = j4

Y = 


20

(s+1)(s+5)



s=j4
(0 − j3) = −2.066 + j0.947

meaning

y(t) = −2.066 cos(4t) − 0.947 sin(4t)

Find y(t) given G(z) (T = 10ms)

Y = 


0.02z

(z−0.9)(z−0.8)

X

x(t) = 3 sin(4t)

Solution: Evaluate at

s = j4

z = esT = e j0.04 = 1∠2.2910

Y = 


0.02z

(z−0.9)(z−0.8)



z=1∠2.2910

(0 − j3) = −1.423 − j2.366

meaning

y(t) = −1.423 cos(4t) + 2.366 sin(4t)

You can verify this in VisSim:

Table of z-transforms

If you want to find the output of a filter G(s) with a step input, you use
LaPlace transforms along with a table of LaPlace transforms and partial
fraction expansion.

Similarly, if you want to find the output of a filter G(z) with a step input, you
use z-transforms along with a table of z-transforms and partial fraction
expansion.

i) Delta Function . The discrete-time delta function isδ(k)

δ(k) =





1 k = 0

0 otherwise

k 0 1 2 3 4 5 6 7

delta(k) 1 0 0 0 0 0 0 0

The z-transform of a delta function is '1', just like the s-domain.

ii) Unit Step: The unit step is

u(k) =





1 k ≥ 0

0 otherwise

It's z-transform can be deriveds as follows. The unit step is:

k 0 1 2 3 4 5 6 7

u(k) 1 1 1 1 1 1 1 1

(1/z)*u(k) 0 1 1 1 1 1 1 1

Subtract

(1-1/z)u(k) 1 0 0 0 0 0 0 0

So,


1 − 1

z

 u(k) = 


z−1

z

 u(k) = 1

u(k) = z

z−1

iii) Decaying Exponential. Let

x(k) = aku(k)

k 0 1 2 3 4 5 6 7

x(k) 1 a a2 a3 a4 a5 a6 a7

a*(1/z)*x 0 a a2 a3 a4 a5 a6 a7

Subtract

(1-a/z)x 1 0 0 0 0 0 0 0

so

(1 − a
z)X = (z−a

z)X = 1

X = (
z

z−a)

These let you create a table of z-transforms like we had in the s-domain:

function y(k) Y(z)

delta δ(k) 1

unit step u(k) 


z

z−1



decaying exponential aku(k) (
z

z−a)

damped sinewave 2b ⋅ ak ⋅ cos (kθ + φ) ⋅ u(k) 


(b∠φ)z

z−(a∠θ)

 + 

(b∠−φ)z

z−(a∠−θ)



Time Response in the z-Domain

Find y(t) assuming x(t) is a unit step:

Y = 


0.2z

(z−0.9)(z−0.5)

X

i) Replace X(z) with the z-transform of a step

Y = 


0.2z

(z−0.9)(z−0.5)





z

z−1



ii) Use partial fractions

Y = 


0.2z

(z−1)(z−0.9)(z−0.5)

 z = 





4

z−1

 + 

−4.5

z−0.9

 + 

0.5

z−0.5



 z

iii) Now apply the table entries

k >= 0y(k) = 4 − 4.5 ⋅ (0.9)k + 0.5 ⋅ (0.5)k

Complex Poles: Find the step response for:

Y =





0.2z


z−0.9∠100 



z−0.9∠−100 






X

i) Replace X with its z-transforrm (a unit step)

Y =





0.2z


z−0.9∠100 



z−0.9∠−100 






 

z

z−1



ii) Factor our a z and use partial fractions

Y = 




5.355

z−1

 + 

2.98∠153.970

z−0.9∠100


 + 

2.98∠−153.970

z−0.9∠−100




 z

iii) Convert back to time using the table of z-transforms

 k >= 0y(k) = 5.355 + 4.859 ⋅ (0.9)k ⋅ cos (100 ⋅ k − 153.970)

Time Value of Money

You can also solve time-value of money problems using z-transforms.

Assume you borrow $100,000 for a house. How much do you have to pay
each month to pay off the loan in 10 years?

Assume 6% interest per year (0.5% per month).

Solution: Let x(k) be how much money you owe today. The amount you owe
next month, x(k+1), is

x(k + 1) = 1.005x(k) − p + X(0) ⋅ δ(k)

where 'p' is your monthly payment starting at k=1. (a step delayed by one
sample). Converting to the z-domain

zX = 1.005X − p
z

z−1





1
z

 + X(0)

zX = 1.005X − p
1

z−1

 + X(0)

(z − 1.005)X = X(0) − p
1

z−1



X = 


X(0)

z−1.005

 − p

1

(z−1)(z−1.005)



Using partial fractions

zX = 


z

z−1.005

X(0) − pz

1

(z−1)(z−1.005)



zX = 


z

z−1.005

X(0) + pz




200

z−1

 − 

200

z−1.005





Converting back to the time domain

zx(k) = 1.005kX(0) − 200p(1.005k − 1)u(k)

Divide by z (delay one sample)

x(k) = 1.005k−1X(0) − 200p(1.005k−1 − 1)u(k − 1)

After 120 payments (10 years), the balance should be zero

x(k) = 1.005k−1X(0) − 200p(1.005k−1 − 1)u(k − 1)

x(121) = 0 = $181, 939 − 200p(0.8194)

p = $1110.02

Your monthly payments are $1,110.02 starting at month #1 and continuing for
120 payments.

If you stretch this out to 30 years (k = 360 payments), the monthly payment
becomes

x(361) = 0 = $602, 257 − 200p(5.0226)

p = $599.55

Note: Paying off the loan over a time span 3 times longer

Reduces the monthly payments by only 46% less, and

Increases the total amount you'll pay on the loan from $133,224 to $215,838.

Also also: That's pretty much all a business
calculator is: a calculator which does
z-transforms where the keys are renamed

interest rate

initial loan value, and

number of payments

