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LaPlace Transforms

Circuits with inductors or capacitors are described by differential equaitons
V=L%
I=C%

LaPlace transforms assume
y = e

giving
dy

—=se’=5y




Differential Equations and Transfer Functions

With the LaPlace assumption, you can turn differential equations into transfer
functions

Example:

Ly 79 L oD 4 15y = 102 4 3
E-'_ dt2+ —+ E_I_ X

Using LaPlace notation
s3Y+7s°Y+9sY+ 15Y = 10sX + 3X

or

10s+3
s 2+75“+9s5+15

G(s) 1s called the transfer function

10s+3
G(s) = ( )
( ) s3+752495+15




Note that this goes both ways:

Example: Find the differential equation relating X and Y

Y_ ( 10s+3 )X
— \$3+752495+15
Solution: Cross multiply
(s° +7s*+9s+15)Y = (10s + 3)X

Replace each 's' with «

d3y d?y dy _ 1ndx
¥+7F+9E+15y—10dt+3x




Analyzing Filtes for Sinusoidal Inputs

G(s) 1s the gain at all frequencies.
- For a specific frequency, substitute s — jm
« Exprss X in phasor form ( real = cosine, imag = -sine )

 QOutput = Gain * Input




Example: Find y(t):

10s+3
y= (s )y
s +75“4+9s5+15

x(¢) =2 cos (41) + 3 sin (41)

Solution: Express X using phasor notation
X=2-j3
s =j4
Y = ( plas ) X = (—0.138 —j0.372)(2 — j3)

3 2
s +75“4+9s5+15 s=i4

Y=-1.394-;0.330
y(1) =—1.394 cos(4r) + 0.330 sin(4¢)




Example 2: Multiple Inputs

« Use superposition

Example: Find y(t)

10s+3
v=( )x
s3+75249s+15

x(t) = 3 cos(4t) + 5 sin(61)

Solution: Treat this as two separate problems:
x1(f) =3 cos(4t)
x>(t) = 5 sin(6¢)




X,(t) = 3 cos(4t)
Y= ( s ) (3+40)=0.415-/1.117

3 2
s +75“4+9s5+15 s=j4

y1(¢) = 0.415 cos(4f) + 1.117 sin(47)

x,(t) = 5 sin(6t)
Y= ( e ) (0 —j5) = —0.642 +j0.640

3 2
s +75“4+9s5+15 5=j6

y2(#) = —0.642 cos(61) — 0.640 sin(6¢)

y()=yi1+y2




Filter Analysis: Bode Plots

Easy:
« Plugin s =jm

« Plot gain vs. frequency

Example:
G(S) - (52+§j+10>
Matlab Code:

w = [0:0.01:10]";
s = J*w;

G = 2*s ./ (s.”2 + 2*s + 10);

plot (w, abs (G) ) ;
xlabel ('Frequency
ylabel ('Gain');

(rad/sec) ') ;
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Filter Design: Poles and Zeros

In general, G(s) will have a numerator and a denominator polynomial

« The zeros are the roots of the numerator polynomial

« The poles are the roots of the denominator polynomial.

Graphically, this is
G (S) — k. I[I(distance from the zeros to jo)

II(distance from the poles to j)

meaning
- Place zeros near frequencies where you want the gain to be small

- Place poles near frequencies where you want the gain to be large




Types of Filters

Filters are categorized into different types:

Filter Type Characteristic Example
Low-Pass Low-frequency gain is large (pass) ( 10 )
High-frequency gain is small (reject) s+10
High-Pass High-frequency gain is large (pass) ( 10s )
Low-frequency gain is smalle (reject) s+10
Band-Pass High-frequency gain is small ( 25 )
Low frequency gain is small (s+1+j50)(s+1—750)

Mid-range frequency is large

A filter's order is the number of poles the filter has. In general, the more poles
a filter has, the better the filter.




RC Filter:

Closest approximation to an ideal low-pass filter with
-« Gain< 1
« No zeros

« Poles can only be real

Example: G(s) = ( o )

s+10
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Butterworth Filter

Closest approximation to an ideal low-pass filter with
-« Gain< 1
« No zeros

« Poles can be real or complex

Solution: Pole Locations for Corner = 1 rad/sec

N=2 N=3 N=4 N=5 N=6
Zeros none none none none none
poles |—1/+450 ~1 —1£+22.59 —1 —1£+15Y
—1£+60Y -1£+67.5° |-1£+36Y —1£ 1459
—12£+72Y —1££75Y




Butterworth Example:

« 5th-Order Butterworth filter

« Corner = 10 rad/sec

_ 10°
Gls) = (s+10)(s+104i360) (s+104i720)
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Chebychev Filter

Closest approximation to an ideal low-pass filter with

« Gain<1+¢

- No zeros

- Poles can be real or complex

Solution: Pole location for e =0.02 and corner = 1 rad/sec

N=2 N=3 N=4 N=5 N=6
Zeros none none none none none
poles  |-1.60£ £50.7° -0.85 | —0.72£%38.5° ~0.48 ~0.47£%36.1
~1.21£4+69.5° -1.11£%77.8°|-0.76£ £59.3° | -0.81£ % 69.8
~1.06£%82.0° | -1.04£ £84.4




Chebychev Example:

« 5th-Order Butterworth filter

« Corner = 10 rad/sec

762, 2
G( 5) = 4.87.6%-10.6
(s+4.8)(s+7.64i59.30) (s+10.64i820)
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Filter Design with fminsearch()

Another way to design filters 1s to use the function fminsearch

Problem: Find { a,b,c,d,e } so that

1 w<4
G(s) = [ a ] ~ {
> <52+bs+c) <s2+ds+e)

0O otherwise




function [ J ] = costf( z )
a = z(1);

b z(2);

c = z(3);

d = z(4);

e z(3);

w = [0:0.01:10]";

s = J*w;

Gideal = Ko(w < 4);
G=a ./ ( (s.”2 + b*s + ¢)
E = abs(Gideal) - abs(G);
J = sum(E .~ 2);

*

(s.”2 + d*s + e)

) ;




Minimizing the cost:

>> [a,b] = fminsearch('costf',1l]0*rand(1l,5))

a = 36.6716 0.8314 12.3599 2.1860 3.1799
b = 13.0720

meaning

36.67
G(s) =
(s2+0.8314s+12.3599) (s2+2.1860s+3.1799)




The gain vs. frequency and pole location looks like:
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Summary

Filters are circuits whose gain changes with frequency

Phasors make filter analysis easy
« Assumes sinusoidal inputs

- Requires the use of complex numbers

Filter design 1s a little harder

« Place poles close to frequencies you want to pass

« Place zeros close to frequencies you want to reject




