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LaPlace Transforms

Circuits with inductors or capacitors are described by differential equaitons

V = LdI

dt

I = CdV

dt

LaPlace transforms assume

y = est

giving
dy

dt
= s est = s y



Differential Equations and Transfer Functions

With the LaPlace assumption, you can turn differential equations into  transfer

functions

Example:

d3y

dt3
+ 7

d2y

dt2
+ 9

dy

dt
+ 15y = 10dx

dt
+ 3x

Using LaPlace notation

s3Y + 7s2Y + 9sY + 15Y = 10sX + 3X

or

Y = 


10s+3

s3+7s2+9s+15


X

G(s) is called the transfer function

G(s) = 


10s+3

s3+7s2+9s+15






Note that this goes both ways:

Example:  Find the differential equation relating X and Y

Y = 


10s+3

s3+7s2+9s+15


X

Solution:  Cross multiply

(s3 + 7s2 + 9s + 15)Y = (10s + 3)X

Replace each 's' with d

dt

d3y

dt3
+ 7

d2y

dt2
+ 9

dy

dt
+ 15y = 10dx

dt
+ 3x



Analyzing Filtes for Sinusoidal Inputs

G(s) is the gain at all frequencies.

For a specific frequency, substitute s → jω

Exprss X in phasor form  ( real = cosine,  imag = -sine )

Output = Gain * Input



Example:  Find y(t):

Y = 


10s+3

s3+7s2+9s+15


X

x(t) = 2 cos (4t) + 3 sin (4t)

Solution: Express X using phasor notation

X = 2 − j3

s = j4

Y = 


10s+3

s3+7s2+9s+15




s=j4

X = (−0.138 − j0.372)(2 − j3)

Y = −1.394 − j0.330

y(t) = −1.394 cos(4t) + 0.330 sin(4t)



Example 2:  Multiple Inputs

Use superposition

Example:  Find y(t)

Y = 


10s+3

s3+7s2+9s+15


X

x(t) = 3 cos(4t) + 5 sin(6t)

Solution:  Treat this as two separate problems:

x1(t) = 3 cos(4t)

x2(t) = 5 sin(6t)



x1(t) = 3 cos(4t)

Y = 


10s+3

s3+7s2+9s+15




s=j4

(3 + j0) = 0.415 − j1.117

y1(t) = 0.415 cos(4t) + 1.117 sin(4t)

x2(t) = 5 sin(6t)

Y = 


10s+3

s3+7s2+9s+15




s=j6
(0 − j5) = −0.642 + j0.640

y2(t) = −0.642 cos(6t) − 0.640 sin(6t)

y(t) = y1 + y2



Filter Analysis:  Bode Plots

Easy:

Plug in s = jω

Plot gain vs. frequency

Example:

G(s) = 


2s

s2+2s+10




Matlab Code:

w = [0:0.01:10]';
s = j*w;
G = 2*s ./ (s.^2 + 2*s + 10);
plot(w,abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');
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Filter Design:  Poles and Zeros

In general, G(s) will have a numerator and a denominator polynomial

The zeros are the roots of the numerator polynomial

The poles are the roots of the denominator polynomial.

G(s) = k
z(s)

p(s)



Graphically, this is

G(s) = k ⋅
Π(distance from the zeros to jω)

Π(distance from the poles to jω)

meaning

Place zeros near frequencies where you want the gain to be small

Place poles near frequencies where you want the gain to be large



Types of Filters
Filters are categorized into different types:

Filter Type Characteristic Example

Low-Pass Low-frequency gain is large (pass)
High-frequency gain is small (reject)




10

s+10



High-Pass High-frequency gain is large (pass)
Low-frequency gain is smalle (reject)




10s

s+10



Band-Pass High-frequency gain is small
Low frequency gain is small
Mid-range frequency is large




2s

(s+1+j50)(s+1−j50)




A filter's order is the number of poles the filter has.  In general, the more poles

a filter has, the better the filter.



RC Filter:

Closest approximation to an ideal low-pass filter with

Gain < 1

No zeros

Poles can only be real

Example:   G(s) = 


10

s+10



n
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Butterworth Filter

Closest approximation to an ideal low-pass filter with

Gain < 1

No zeros

Poles can be real or complex

Solution:  Pole Locations for Corner = 1 rad/sec

N=2 N=3 N=4 N=5 N=6

zeros none none none none none

poles −1∠ ± 450 −1

−1∠ ± 600

−1∠ ± 22.50

−1∠ ± 67.50

−1

−1∠ ± 360

−1∠ ± 720

−1∠ ± 150

−1∠ ± 450

−1∠ ± 750



Butterworth Example:

5th-Order Butterworth filter

Corner = 10 rad/sec

G(s) =





105

(s+10)s+10∠±360 


s+10∠±720 







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Chebychev Filter

Closest approximation to an ideal low-pass filter with

Gain < 1 + ε

No zeros

Poles can be real or complex

Solution:  Pole location for  and corner = 1 rad/secε = 0.02

N=2 N=3 N=4 N=5 N=6

zeros none none none none none

poles −1.60∠ ± 50.70 −0.85

−1.21∠ ± 69.50

−0.72∠ ± 38.50

−1.11∠ ± 77.80

−0.48

−0.76∠ ± 59.30

−1.06∠ ± 82.00

−0.47∠ ± 36.1

−0.81∠ ± 69.8

−1.04∠ ± 84.4



Chebychev Example:

5th-Order Butterworth filter

Corner = 10 rad/sec

G(s) =





4.8⋅7.62⋅10.62

(s+4.8)s+7.6∠±59.30 


s+10.6∠±820 







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Filter Design with fminsearch()

Another way to design filters is to use the function fminsearch

Problem:  Find { a,b,c,d,e } so that

G(s) =





a


s

2+bs+c

s

2+ds+e




 ≈






1 ω < 4

0 otherwise



function [ J ] = costf( z )
 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);
 
 w = [0:0.01:10]';
 s = j*w;
 Gideal = 1 .* (w < 4);

 G = a ./  ( (s.^2 + b*s + c) .* (s.^2 + d*s + e) );
 
 E = abs(Gideal) - abs(G);
 
 J = sum(E .^ 2);
 
 end

 



Minimizing the cost:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =   36.6716   0.8314   12.3599  2.1860   3.1799
b =   13.0720

meaning

G(s) =





36.67


s

2+0.8314s+12.3599

s

2+2.1860s+3.1799








The gain vs. frequency and pole location looks like:
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Summary

Filters are circuits whose gain changes with frequency

Phasors make filter analysis easy

Assumes sinusoidal inputs

Requires the use of complex numbers

Filter design is a little harder

Place poles close to frequencies you want to pass

Place zeros close to frequencies you want to reject


