Timer1 Compare Interrupts

NDSU ECE 376

Lecture #24
Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Timer1 Compare Mode:

The PIC we use is able to measure time to 100ns. If you want to drive an
output pin high or low at a precise time (accurate to 100ns), Timerl compare

interrupts are used.
There are several reasons you might want to do this:
« To output a precise frequency

« To generate a pulse with a precise duration
« To output OV and 5V using PWM

How Timerl Compare Works

Timerl runs in the background
« When TMRI1 = CCPRI1, a Capturel interrupt is triggered
« When TMR1 = CCPR2 a Capture?2 interrupt is triggered

CCPR1
16-bit register

Compare TMR1 to CCPR1
Interrupt when equal

TMR1
16-Bit Time

Compare TMR1 to CCPR2
Interrupt when equal

CCPR2
16-bit register

Timer1 Compare

Interrupt when
TMR1 = CCPR2

CCP2CON = 0x0A: no change

Interrupt Description Input Output Conditions Enable Flag
Timer 1 | Trigger after N events RCO none N = (PS)(Y) TMR1ON =1 | TMR1IF
N=1.2" TMR1CS = 1 T1CON =0x81: PS =1 TMR1IE = 1
100ns to 0.52 sec T1CON =0x91: PS=2 TMR1IP =1
OSC/4 T1CON = 0xA1: PS=4 PEIE =1
TMR1CS =0 T1CON =0xB1: PS =38
TMR1 =-Y
Timer 1 | Drive a pin high or low OSC/4 RC2 |Interrupt when CCPR1 =TMR1| CCP1IE =1 CCP1IF
Compare at a precise time CCP1CON = 0x08: Set RC2 | TMR10ON = 1
Mode 1 CCP1CON = 0x09: Clear RC2| PEIE =1
Interrupt when CCP1CON = 0x0A: no change
TMR1 = CCPR1
Timer 1 | Drive a pin high or low OSC/4 RC1 |Interrupt when CCPR2 = TMR1| CCP12E=1 | CCP2IF
Compare at a precise time CCP2CON = 0x08: Set RC1 | TMR10ON = 1
Mode 2 CCP2CON = 0x09: Clear RC1 PEIE =1

Output a Precise Frequency: Capturei.C
Problem: Output the note F4 (349.228Hz) on pin RC2

Solution: Toggle RC2 every 14317 clocks (rounded down)

10,000,000 \ _
N= (2-349.228Hz) =14317.29

RC2 - 14,317 clocks -

CCP1CON = 0x08 CCP1CON = 0x09 CCP1CON = 0x08 CCP1CON = 0x09

A) A

TMR1 = CCP1CON TMR1 = CCP1CON TMR1 = CCP1CON

Assume
« PS=1 (Timerl counts every 100ns)

Increment CCPR1 by 14317 every interrupt
CCPR1 += 14317

This sets up the next interrupt 14,317 clocks after the last interrupt

vold i1nterrupt IntServe (void)
{
if (TMRIIF) {
TIME = TIME + 0x10000;
TMR1IF = O0;
}
if (CCP1IF) {
CCP1CON = CCP1CON ~ 0x01; // toggle between 0x08 & 0x09
CCPR1 += 14317;
CCP1IF = O0;
}

Another Option
« RCO has a 50 clock delay in it's output

« Frequency 1s still correct

vold 1nterrupt IntServe (void)
{
if (TMR1IF) {
TIME = TIME + 0x10000;
TMR1IF = O0;
}
if (CCP1IF) {
RCO = !RCO;
CCPR1 += 14317;
CCP1IF = 0;
}

Result

M Pos: -2.000ms MEASURE

A . CH1
Freg
343.2Hz
CH1

| Pos Width
] 1.432ms

LH1

llllllll\lllll \!Illlllilt.niilhllll...il....l....l'!.'.h ..,IIIIIIIIIIIIHIIII|l|||||||l|||!ll||IllllllllllllllilIINﬂL*"‘Li" Ty

Compare1.C: RC2 outputs a 349.228Hz using Timer1 Compare interrupts

Precise Pulse Width
Problem: Output a pulse that is precisely 10ms long when RBO is pressed.

Solution: Use two different interrupts:

« INTO records the time that the button was pressed (time of rising edge on RB0). RCO
1s set at that time.

« Comparel kicks in 10ms later. At that time, RCO is cleared.

RBO

RCO 10ms

} i

INTO Timer1 Compare 1
Set RC2 Clear RC2

Code: Interrupt Service Routine:

// Interrupt Service Routine

vold i1nterrupt IntServe (void)

{
if (INTOIF) {

RC2 = 1;
CCPR1 = TMR1 + 12500; // 10ms with PS = 8
CCP1CON = 0x09; // clear RC2 when TMR1 == CCPRI1

INTOIF = O;
}
if (TMR1IF) {
TIME = TIME + 0x10000;
TMR1IF = 0O;
}
1if (CCP1IF) {
RC2 = 0; // not needed - Jjust to be sure
CCP1IF = O0;
}

Resulting Signal on RC2:

Pos Width
1 1001ms

: : : CH1
||||E||||_ Negh‘ldth

EEEEIERE

| CH1
. Period
7

CH1
MNone

i mm T nmmmum\ R T EHT T aT

Compare2.c: A 10ms pulse is generated every time you press RB0O

Pulse Width Modulation

Output an analog-like signal
« Average = 0.00V to 5.00V with 65,536 steps

Timerl:
« Set RC2 when TMR1 =0 (every 65,536 clocks)

Capturel:
« Clear RC2 when TMR1 = CCPR1

6.5536ms
- o
: >< Compare1 Interrupt
Timer1 Interrupt TMR1 = CCPR1

TMR1 = 0x0000

Code: PWM.C

// Global Variables
unsigned long int TIME;
unsigned 1nt PWM;

volid interrupt IntServe (void)
{
if (TMRI1IIF) {
TIME = TIME + 0x10000;
TMR1IF = 0;
}
if (CCP1lIF) {
if (RC2) {
CCP1CON = 0x09; // clear RC2 when TMR1 == PWM
CCPR1 = PWM;
}
else {
CCP1CON =
CCPR1 = 0;
}
CCP1IF = O0;
}

0x08; // set RC2 when TMR1 ==

Example: Output 1.000V (average)
—_ (V) _
PWM = (ﬁ) =20%

CCPRI1 should then be 20% of 1its maximum value:
CCPR1=0.2-65,536=13,107

i@ Trig'd M Pos: 2200ms __ MEASUR
' : - : - - . CH1

Freq
152.7Hz

CH1
Period
1 6.550ms

CH1
Mean
1.03Y

CH1
Pos Width
1.310ms

P2 2 1 S . Je
CH1 2,00V b A v X

PWM Limitations
65,536 steps from 0.00V to 5.00V
Minimum pulse width = 50 clocks
« 0.076% on
Maximum pulse width = 65,536 - 50
« 99.924% on
It takes about 50 clocks to trigger an interupt

65,536 clocks

RC2

\ CCPR1 not ready yet/

50ish clocks

B CCPR1 = PWM

Fun with Timerl Compare Interrupts:
« Can you hear a 1% difference in frequency at 349.228Hz?

Procedure Code
‘1 if (CCP1IF) {
Each Trial: if (PLAY) RCO = !RCO;
« Play 349.228Hz for 500ms else RCO = 0;
CCPR1 += N;
- Pause 100ms CCPLIF = O;
 Play 352.72Hz for 500ms (1% more) ___i __________
« Pause 1000ms while (1) {
N = 14317;
PLAY = 1;
Problem: You know that the 2nd gi;g—fsé?oo) /
frequency 1s 1% higher Wait_ms (100);
. N = 14175;
« Biases the result PLAY = 1;
- (not a blind experiment) Wait_ms (500);
PLAY = 0;

Wait_ms (1000);
}

Take 2: Blind Experiment
 Not double blind

Procedure

Operator presses RBO or RB1
« Play 349.228Hz for 500ms

Pause 100ms

if RBO: Play same note
if RB1: Play different note
Pause 1000ms

Problem: The person running the test
knows the answer

« Not a double-blind experiment

Code
while (1) {

N = 14317;

PLAY = 1;

Wait_ms (500);

PLAY = 0;

Walt_ms (100);
if(RBO) N = 14317;
if(RB1) N = 14175;
PLAY = 1;

Wailt_ms (500);

PLAY = 0;

Wait _ms (1000);
}

Importance of double-blind experiments
www.britannica.com/topic/Clever-Hans

« Clever Hans was a sensation in 1891 - 1907

« This horse could add, subtract, read, and
spell

Actually, Clever Hans was reading body
language

- The observers knew the answers

« They were giving clues

« Similar to a "tell" in poker

Double-Blind Experiment

Procedure
Flip a coin
- If heads, play two different notes

- If tails, play the same note twice

Operator 'guesses' if the notes were
same or different

« Press RBO (same) or RB1 (different)

« Computer tallies correct / incorrect
guesses

Null Hypothesis
« You cannot tell the difference
« p=0.5(50/50 odds)
 Chi-squared test

Code
while (1) {
COIN = TRM1 % 2;
N = 14317;
PLAY = 1;
Wait _ms (500) ;
PLAY = 0;

Wait _ms (100);
if (COIN) N = 14175;
else N = 14317;

PLAY = 1;
Wait_ms (500);
PLAY = 0;

Wait_ms (1000);
}

Importance of your question / hypothesis...

What is the smallest frequency difference you can hear?
« Too broad

© JOOHz? 1kHz? 10kHz?
° 1%?0.1%? 0.01%?

« May take years and hundreds of experiments to answer

Better:

Can you hear a 1% difference in frequency at 359.228Hz?
 Needs to be specific enough to be doable

« Needs to be general enough to be interesting

