
Timer1 Compare Interrupts

NDSU ECE 376
Lecture #24

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Timer1 Compare Mode:

The PIC we use is able to measure time to 100ns. If you want to drive an

output pin high or low at a precise time (accurate to 100ns), Timer1 compare

interrupts are used.

There are several reasons you might want to do this:

To output a precise frequency

To generate a pulse with a precise duration

To output 0V and 5V using PWM

How Timer1 Compare Works

Timer1 runs in the background

When TMR1 = CCPR1, a Capture1 interrupt is triggered

When TMR1 = CCPR2 a Capture2 interrupt is triggered

PS
TMR1

16-Bit Time

CCPR1

16-bit register

CCPR2

16-bit register

Compare TMR1 to CCPR1

Interrupt when equal

Compare TMR1 to CCPR2

Interrupt when equal

Timer1 Compare
Interrupt Description Input Output Conditions Enable Flag

Timer 1 Trigger after N events
N = 1 .. 219

100ns to 0.52 sec

RC0
TMR1CS = 1

OSC/4
TMR1CS = 0

none N = (PS)(Y)
T1CON = 0x81: PS = 1
T1CON = 0x91: PS = 2
T1CON = 0xA1: PS = 4
T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1
TMR1IE = 1
TMR1IP = 1

PEIE = 1

TMR1IF

Timer 1
Compare
Mode 1

Drive a pin high or low
at a precise time

Interrupt when
 TMR1 = CCPR1

OSC/4 RC2 Interrupt when CCPR1 = TMR1
CCP1CON = 0x08: Set RC2

CCP1CON = 0x09: Clear RC2
CCP1CON = 0x0A: no change

CCP1IE = 1
TMR1ON = 1

PEIE = 1

CCP1IF

Timer 1
Compare
Mode 2

Drive a pin high or low
at a precise time

Interrupt when
 TMR1 = CCPR2

OSC/4 RC1 Interrupt when CCPR2 = TMR1
CCP2CON = 0x08: Set RC1

CCP2CON = 0x09: Clear RC1
CCP2CON = 0x0A: no change

CCP12E = 1
TMR1ON = 1

PEIE = 1

CCP2IF

Output a Precise Frequency: Capture1.C

Problem: Output the note F4 (349.228Hz) on pin RC2

Solution: Toggle RC2 every 14317 clocks (rounded down)

N =



10,000,000

2⋅349.228Hz


 = 14317.29

RC2

CCP1CON = 0x08 CCP1CON = 0x09 CCP1CON = 0x08 CCP1CON = 0x09

TMR1 = CCP1CONTMR1 = CCP1CONTMR1 = CCP1CON

14,317 clocks

Assume

PS = 1 (Timer1 counts every 100ns)

Increment CCPR1 by 14317 every interrupt

CCPR1 += 14317

This sets up the next interrupt 14,317 clocks after the last interrupt

void interrupt IntServe(void)
{
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 CCP1CON = CCP1CON ^ 0x01; // toggle between 0x08 & 0x09
 CCPR1 += 14317;
 CCP1IF = 0;
 }
 }

Another Option

RC0 has a 50 clock delay in it's output

Frequency is still correct

void interrupt IntServe(void)
{
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 RC0 = !RC0;
 CCPR1 += 14317;
 CCP1IF = 0;
 }
 }

Result

Compare1.C: RC2 outputs a 349.228Hz using Timer1 Compare interrupts

Precise Pulse Width

Problem: Output a pulse that is precisely 10ms long when RB0 is pressed.

Solution: Use two different interrupts:

INT0 records the time that the button was pressed (time of rising edge on RB0). RC0

is set at that time.

Compare1 kicks in 10ms later. At that time, RC0 is cleared.

RB0

INT0
Set RC2

Timer1 Compare 1

Clear RC2

10msRC0

Code: Interrupt Service Routine:

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (INT0IF) {
 RC2 = 1;
 CCPR1 = TMR1 + 12500; // 10ms with PS = 8
 CCP1CON = 0x09; // clear RC2 when TMR1 == CCPR1
 INT0IF = 0;
 }
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 RC2 = 0; // not needed - just to be sure
 CCP1IF = 0;
 }
 }

Resulting Signal on RC2:

Compare2.c: A 10ms pulse is generated every time you press RB0

Pulse Width Modulation

Output an analog-like signal

Average = 0.00V to 5.00V with 65,536 steps

Timer1:

Set RC2 when TMR1 = 0 (every 65,536 clocks)

Capture1:

Clear RC2 when TMR1 = CCPR1

Timer1 Interrupt

TMR1 = 0x0000

Compare1 Interrupt

TMR1 = CCPR1

6.5536ms

Code: PWM.C
// Global Variables
unsigned long int TIME;
unsigned int PWM;

void interrupt IntServe(void)
{
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 if(RC2) {
 CCP1CON = 0x09; // clear RC2 when TMR1 == PWM
 CCPR1 = PWM;
 }
 else {
 CCP1CON = 0x08; // set RC2 when TMR1 == 0
 CCPR1 = 0;
 }
 CCP1IF = 0;
 }
 }

Example: Output 1.000V (average)

PWM =



1V

5V


 = 20%

CCPR1 should then be 20% of its maximum value:

CCPR1 = 0.2 ⋅ 65, 536 = 13, 107

PWM Limitations

65,536 steps from 0.00V to 5.00V

Minimum pulse width = 50 clocks

0.076% on

Maximum pulse width = 65,536 - 50

99.924% on

It takes about 50 clocks to trigger an interupt

RC2

TMR1 = 0
CCPR1 = 0

TMR1 = 0

CCPR1 = PWM

CCPR1 not ready yet

50ish clocks

65,536 clocks

Fun with Timer1 Compare Interrupts:

Can you hear a 1% difference in frequency at 349.228Hz?

Procedure Code

Each Trial:

Play 349.228Hz for 500ms

Pause 100ms

Play 352.72Hz for 500ms (1% more)

Pause 1000ms

Problem: You know that the 2nd

frequency is 1% higher

Biases the result

(not a blind experiment)

if (CCP1IF) {
 if(PLAY) RC0 = !RC0;
 else RC0 = 0;

 CCPR1 += N;

 CCP1IF = 0;
 }

while(1) {

 N = 14317;

 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(100);

 N = 14175;

 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(1000);
 }

Take 2: Blind Experiment

Not double blind

Procedure Code

Operator presses RB0 or RB1

Play 349.228Hz for 500ms

Pause 100ms

if RB0: Play same note

if RB1: Play different note

Pause 1000ms

Problem: The person running the test

knows the answer

Not a double-blind experiment

while(1) {

 N = 14317;

 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(100);

 if(RB0) N = 14317;

 if(RB1) N = 14175;

 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(1000);
 }

Importance of double-blind experiments
www.britannica.com/topic/Clever-Hans

Clever Hans was a sensation in 1891 - 1907

This horse could add, subtract, read, and

spell

Actually, Clever Hans was reading body

language

The observers knew the answers

They were giving clues

Similar to a "tell" in poker

Double-Blind Experiment

Procedure Code

Flip a coin

If heads, play two different notes

If tails, play the same note twice

Operator 'guesses' if the notes were

same or different

Press RB0 (same) or RB1 (different)

Computer tallies correct / incorrect

guesses

Null Hypothesis

You cannot tell the difference

p = 0.5 (50/50 odds)

Chi-squared test

while(1) {

 COIN = TRM1 % 2;

 N = 14317;
 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(100);

 if(COIN) N = 14175;

 else N = 14317;

 PLAY = 1;
 Wait_ms(500);
 PLAY = 0;
 Wait_ms(1000);
 }

Importance of your question / hypothesis...

What is the smallest frequency difference you can hear?

Too broad
100Hz? 1kHz? 10kHz?

1%? 0..1%? 0.01%?

May take years and hundreds of experiments to answer

Better:

Can you hear a 1% difference in frequency at 359.228Hz?

Needs to be specific enough to be doable

Needs to be general enough to be interesting

