
Timer2 Interrupts
Examples

ECE 376 Embedded Systems

Jake Glower - Lecture #19
Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Examples of Timer2 Interrupts:

Once you can keep track of time, there's lots of things you can do. A short list is:

Build a better wait routine

Build a stopwatch that's accurate to 0.0001 second (N=1,000)

Generate musical notes

Drive a stepper motor (step every 20ms)

Vary the light output (pulse width modulation)

Better Wait Routine:
Wait X milliseconds (precisely)

Set up Timer2 for 1ms (a nice round number)

N = 10,000 (1ms)

- A = 10, B = 250, C = 4

T2CON

0x4D

7 6 5 4 3 2 1 0

- A3 A2 A1 A0 TMR2ON C1 C0

0 1 0 0 1 1 0 1

A = 10 (9 + 1) C = 4

Binary Clock
N = 10,000 (1ms)

Interrupt Service Routine Main Routine

void interrupt IS(void)

{

 RA1= !RA1;

 if(DELAY) DELAY -= 1;

 }

while(1) {

 RA2 = !RA2;

 while(DELAY);

 DELAY = 1000;

 TIME = TIME + 1;

 LCD_Move(1,0);

 LCD_Out(TIME, 3, 0);
 }

Build a Stopwatch
Accurate to 0.0001 second

100x better resolution than the Olympics

Functions:

RB0: Start

RB1: Stop

RB2: Clear

N = 1,000

A = 1, B = 250, C = 4

T2CON

0x05

7 6 5 4 3 2 1 0

- A3 A2 A1 A0 TMR2ON C1 C0

0 0 0 0 0 1 0 1

A = 1 (0 + 1) C = 4

PR2 = 249

Stopwatch: Interrupt Service Routine

RA0: Interrupts every 100us

- RA0 = 5000Hz

- RA1 = 2500Hz

- RA2 = 1250Hz

nsigned int TIME;

unsigned char RUN;

// Subroutines

#include "LCD_PortD.C"

void interrupt IntServe(void)

{

 if (TMR2IF) {

 PORTA += 1;

 if (RB1) RUN = 1;

 if (RB0) RUN = 0;

 if (RB2) TIME = 0;

 if (RUN) TIME += 1;

 TMR2IF = 0;

 }

 }

Stopwatch: Main Routine

Thee main routine only displays whatever

the current time is.

- RC0: Loop time = 6.638ms

- Doesn't tell you much...

The interrupt does all the work.
 // initialize Timer2 for 1ms

 PR2 = 249;

 T2CON = 0x4D;
 TMR2IE = 1;

 PEIE = 1;

 TMR2IP = 1;

 TIME = 0;

 RUN = 0;

 GIE = 1;

 while(1) {

 RC0 = !RC0;

 LCD_Move(1,0);

 LCD_Out(TIME, 5, 3);
 }

 }

LCD Display of Time, Accurate to 0.0001s (one interrupt)

Build a 3-Key piano:
You can change the condition

of the interrupt (N)

Example: 3-key piano

N =



10,000,000

2⋅Hz




Interrupt:
void interrupt IS(void)

{

 if (TMR2IF) {

 if(PORTB) RA1 = !RA1;

 else RA1 = 0;

 TMR2IF = 0;

 }

 }

Main Routine
 while(1) {

 if (RB0) PR2 = 236;

 if (RB1) PR2 = 210;
 if (RB2) PR2 = 198;

 };

3-Key Piano: Result

 440.00 Hz 493.88 Hz 523.25 Hz

Stepper Motor:

Step every 20ms (200,000 clocks)

Step every 100th interrupt

N = 2,000

A = 10, B = 200, C = 1

T2CON

0x4C

7 6 5 4 3 2 1 0

- A3 A2 A1 A0 TMR2ON C1 C0

0 1 0 0 1 1 0 0

A = 10 (9 + 1) C = 1

Stepper Motor

Let interrupts do the work

Interrupt Service Routine Main Routine

void interrupt IS(void)

{

 N = (N + 1) % 100;

 if(N == 0) {

 STEP += 1;

 PORTC = TABLE[STEP % 4];

 RA1 = !RA1;
 }

 TMR2IF = 0;

 }

while(1) {

 LCD_Move(0,8);

 LCD_Write(STEP, 5, 0);

 }

Pulse Width Modulation
A way to make a binary output look like an analog output

Allow you to output any color on a Piranah RGB LED

Vary the on-time from 0% (PWM = 0) to 100% (PWM = 64)

N = 0 N = 100N = PWM

Varies

Pulse Width Modulation
Set N = 200

- A = 1, B = 200, C =1

Interrupt Service Routine Main Routine

void interrupt IS(void)

{

 N = (N + 1) % 64;

 if(N < PWM) PORTC = 0x3F;

 else PORTC = 0;

 if(N == 0) RA1 = !RA1;

 TMR2IF = 0;

 }

while(1) {

 if(RB0) PWM = 0;

 if(RB1) PWM = 9;

 if(RB2) PWM = 18;

 if(RB3) PWM = 27;

 if(RB4) PWM = 36;

 if(RB5) PWM = 45;

 if(RB6) PWM = 54;
 if(RB7) PWM = 64;

 LCD_Move(1,0);

 LCD_Write(PWM, 3, 0);

 }

PWM Validation:
Frequency on RA1 Voltage on PORTC

N = 200 * 64 = 12,800

f = (10,000,000) / 2N

f = 390.625Hz

RB7: 4.55V

RB6: 3.84V

RB5: 3.20V

RB4: 2.56V

RB3: 1.92V

RB2: 1.28V

RB1: 0.64V

RB0: 0.00V

Summary

With Timer2 Interrupts, the PIC processor can do two things at the same time

Interrupt:

Measure time

- Resolution = 1ms (N = 10,000),

- Resolution = 0.1ms (N = 1,000), or

Output a frequency

- N =



10,000,000

2⋅Hz




Main Routine:

Drive the LCD display, read the buttons, etc. in the main routine

Communication with the main routine is through global variables

