
Timer2 Interrupts
ECE 376 Embedded Systems

Jake Glower - Lecture #18
Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Timing in Assembler and C:

You can set the timing of a routine in assembler and C

Assembler: Count instructions

C: Trial and Error (Oscilloscope helps)

Assembler: Count every 10ms Solution C: Count every 10ms

Loop incf PORTC,F

 call Wait

 goto Loop

Wait movlw 80

 movwf CNT1

Loop1 movlw 250

 movwf CNT2

Loop2 nop

 nop

 decfsz CNT2

 goto Loop2

 decfsz CNT1

 goto Loop1

 return

void Main(void)

{

 unsigned int i;

 COUNTER = 0;

 TRISC = 0;

 do {

 COUNTER += 1;

 PORTC = COUNTER;

 for(i=0; i<6170; i++);

 } while (1>0);

 }

Problems with Timing

The timing is slightly off

It's hard to get the number of clocks per loop to be exactly 100,000

It's inefficient

99.9% of the time is spent in the wait loop

It makes code changes a pain

If you add/ remove anything to the code, the timing is off

TIMER Interrupts
Interrupts solve all of these problems

Interrupts are similar to subroutines except that

Subroutines are routines called by software (such as the 10ms wait loop from before)

Interrupts are routines called by hardware (such as a certain time elapses)

Timer Interrupts are useful: four are avablable of a PIC18F4626:

TIMER0: Interrupt after N events (or N clocks). N = 1 to 224 (1.67 seconds)

TIMER1: Interrupt after N events (or N clocks). N = 1 to 219 (52 milliseconds)

TIMER2: Interrupt every N clocks. N = 1 to 216 (6.5 millisecond)

TIMER3: Interrupt after N events (or N clocks). N = 1 to 219 (52 milliseconds)

Defaults:
Default is interrupts are turned off

You have to turn them on to use them.

If an interrupt occurs,

The present instruction is completed

The processor inserts a call 0x08 into the program

The interrupt service routine must be located at address 0x08

What happens on an interrupt?

Save the W and STATUS register.

Interrupts can be called at any time (i.e. middle of an if

statement)

Clear TMR2IF.

Disables interrupts.

Interrupts cannot interrupt another interupt.

Do something

Optional.

Exit with retfie

Return from interrupt

Restores store W and STATUS

Return the processor to its prior state

Interrupt

Save W & STATUS

Do Something

Restore W & STATUS

Exit

Timer2 Interrupts

Interrupts every N clocks

1 < N < 65,536 (6.55ms)

N = A * B * C

A = 1..16

B = 1..256

C = 1, 4, or 16

Measure time to 1.000ms

N = 10,000

Output 440Hz

N = 11,364

Timer2 Interrupts vs. the Main Routine
The main routine can do whatever

Drive the LCD display

Make lights bounce back and forth

Read the push buttons

Interrupts run in the background

They have no affect on the main routine

The main routine has no affect on the interrupts

Procedure to Turn On Timer2 Interrupts

Step 1: Turn on the enable bits (x4)

TMR2ON = 1;

TMR2IE = 1;

PEIE = 1;

TMR2IP = 1;

Plus a Global Interrupt Enable

GIE = 1;

Forget any of these and interrupts won't happen

Procedure to Use Timer2 Interupts

Step 2: Set the Conditions for the interrupt (N)

Interrupt every N clocks

N = A * B * C

A, B, and C are defined by registers T2CON and PR2:

T2CON 7 6 5 4 3 2 1 0

- A3 A2 A1 A0 TMR2ON C1 C0

PR2 7 6 5 4 3 2 1 0

B7 B6 B5 B4 B3 B2 B1 B0

Setting A, B, and C
N = A * B * C

Maximum value = 65,536 (6.5536ms)

PostScalar A Main Scalar B Prescalar C

A3:A2:A1:A0 A B7:B0 B C1:C0 C

0000 1 0000 0000 1 00 1

0001 2 0000 0001 2 01 4

10 16

1110 15 1111 1110 255 11 16

1111 16 1111 1111 256

Example: Toggle RC0 every 6.5536 ms (65,536 clocks)
N = 16 * 256 * 16

void interrupt timer2(void)

{
 RC0 = !RC0;

 TMR2IF = 0;

 }

// initialize Timer2

 T2CON = 0xFF;

 PR2 = 255;

 TMR2IE = 1;

 PEIE = 1;

 TMR2ON = 1;

 TMR2IP = 1;

// Turn on all interrupts

 GIE = 1;

Example 2: Toggle RC0 every 1.000ms
N = 10 * 250 * 4 = 10,000 (1.000ms)

or

PR2 = 249

T2CON = 0x4D

T2CON 7 6 5 4 3 2 1 0

- A3 A2 A1 A0 T2E C1 C0

(A=9, C=1) 0 1 0 0 1 1 0 1

A = b1001 + 1 = 10 C = 4

Toggle RC0 every 1.000ms (cont'd)

void interrupt timer2(void)

{

 RC0 = !RC0;

 TMR2IF = 0;

 }

// initialize Timer2

 T2CON = 0x4D;

 PR2 = 249;

 TMR2IE = 1;

 PEIE = 1;

 TMR2ON = 1;

 TMR2IP = 1;

// Turn on all interrupts

 GIE = 1;

Example 3: Play 440Hz

N = 11,364

A = 12, B = 237, C = 4

void interrupt timer2(void)

{

 RC0 = !RC0;

 TMR2IF = 0;

 }

// initialize Timer2

 T2CON = 0x5D;

 PR2 = 236;

 TMR2IE = 1;

 PEIE = 1;

 TMR2ON = 1;

 TMR2IP = 1;

 GIE = 1;

Interrupts and Flow Charts

You almost have to use parallel flow charts:

The main routine starts executing on reset

The interrupt routine is called every N clocks

We have no idea when the interrupt is called

Note that

The main routine simply watches COUNTER

and sends it to PORTC.

The Interrupt routine is responsible for changing

COUNTER every 1ms

Start

Set PortC

to output

Initialize Timer2

Interrupts for 2ms

Turn On Interrupts

Copy COUNT

to PORTC

Start

Every 2ms

Save W & STATUS

(do stuff)

Clear Interrupt

Flag

Restore

W & STATUS

Return from

Interrupt

Main Routine Interrupt Service Routine

Increment COUNT

11

Interrupt Constraints

Timer2 interrupts are a way to keep track of time.

The PIC is running at 10 million instructions / second (10MHz)

Every N clocks, a Timer2 interrupt is triggered

When the interrupt is triggered (every N clocks)

The main routine is halted

The interrupt routine executes, then

You return back to the main routine

Timer2 Interrupt is triggered every N clocks

In Main RoutineIn Main Routine In Main RoutineIn Main Routine

Main routine halted
Running the interrupt service routine

Interrupt Interrupt

Minimum Time Between Interrupts

It takes about 50 clocks to call an interrupt

More if the interrupt does something

The interrupt steals cycles from the main routine

N cannot be less than 50

It takes about 50 clocks to call an interrupt and return

If N is less than 50, it acts as if N = 50

Interrupt Time

(clock resolution)

Clocks / Interrupt (N) # Clocks Spent in the
Interrupt

Clocks Left for the
Main Routine

Processor 'Speed'

1ms 10,000 50 9,950 99.5%

100 us 1,000 50 950 95%

10 us 100 50 50 50%

1 us 10 50 -50 0%

Maximum Time Between Interrupts

a) Maximum value for N is 65,536

A = 16, B = 256, C = 16

6.5536ms

b) There is no maximum

Instead of couting every interrupt, count every 10th

interrupt

There is no maximum size for a counter

The counter must be a global variable

What Happens If....
If you forget to include this line of code...

RC0 toggles every 50 clocks

Upon exit, the main routine sees that TMR2IF=1

This triggers another interrupt (RC0 toggles)

Upon exit, the main routine sees that TMR2IF = 1

This triggers anotehr interrupt (RC0 toggles)

etc.

The program is stuck inside the interrupt

What Happens If....
If you forget to include this line of code...

Timer2 interrupts are being called

A, B, and C have some value

Whatever they were set to last time you ran a

program

You just don't know what they are

RC0 toggles at an unknown freqnecy

What Happens If....
If you forget to include this line of code...

Interrupts are not enabled.

If they are not enabled, they don't happen

RC0 never changes

Programming Style when Using Interrupts

Keep the interrupt routine short

No do/while loops

No for loops

Just get in, do something, get out

The next interrupt is coming up

If you spend too much time in the interrupt, you'll

miss interrupts

Summary

Timer2 Interrupts are a way to

Keep precise track of time

With a maximum resolution of 100us (N = 1000)

Output a precise frequency

This is in parallel to the main routine

The processor can now do two things at once

