
NeoPixels &

In-Line Assembler
ECE 376 Embedded Systems

Jake Glower - Lecture #12
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Assembler Code for NeoPixels

Assembler has advantages

It lets you control the I/O pins

It allows for precise timing

Disadvantages:

Really hard to write, debug, maintain, reuse

To write to a NeoPixel, send a series of 24-bit commands:

Green (byte 1) Red (byte 2) Blue (byte 3)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Timing is critical
Each bit needs to be 1.2us long (12 clocks)

Logic level 0 is a 300ns pulse (3 clocks)

Logic level 1 is a 700ns pulse (7 clocks)

A pause of 50us or more (500 clocks) signifies a new message

Such precise timing is

Difficulty in C

Easy in assembler

Logic 0 Logic 0Logic 1 End of Message

0.3us0.7us0.3us

1.2us1.2us 1.2us > 50us

In-Line Assembler

Almost all C compilers offer this

Makes it easy on the compiler: you write the assembler code for it

Allows us to reuse the previous assembler routines

One Instruction Multiple Instructions

asm(" nop"); #asm

 nop

 nop

 nop

#endasm

Global Variables

Intro to C: Never never use global variables

Makes debugging hard

Makes code hard to follow

Embedded Systems: Given a choice, never use global variables.

Sometimes it's the best option

Everyone can see global variables: C and assembler

One way to pass date from a C program to an assembler program

Assembler C

PIXEL equ 0x0000 unsigned char PIXEL @ 0x000;

In-Line Assembler and Bottom Up Programming

Level 1: (Assembler)

Pixel_1.asm

Send a bit

Level 2: (Assembler)

Send a byte (8 bits)

Pixel_8.asm

Level 3: (C)

Send RED, GREEN, BLUE

void NeoPixel_Display(char RED, char GREEN, char BLUE)

{

 PIXEL = GREEN; asm(" call Pixel_8 ");

 PIXEL = RED; asm(" call Pixel_8 ");

 PIXEL = BLUE; asm(" call Pixel_8 ");

 asm(" return");

#asm

Pixel_8:

 call Pixel_1

 call Pixel_1

 call Pixel_1

 call Pixel_1

 call Pixel_1

 call Pixel_1

 call Pixel_1

 call Pixel_1

 return

Pixel_1:

 bsf ((c:3971)),0 ; PORTD,0

 nop

 btfss ((c:0000)),7

 bcf ((c:3971)),0

 rlncf ((c:0000)),F

 nop

 nop

 bcf ((c:3971)),0

 return

#endasm

}

NeoPixel0.C

Display a color wheel
while(1) {

 NeoPixel_Display(20, 0, 0);

 NeoPixel_Display(15, 5, 0);

 NeoPixel_Display(10, 10, 0);
 NeoPixel_Display(5, 15, 0);

 NeoPixel_Display(0, 20, 0);

 NeoPixel_Display(0, 15, 5);

 NeoPixel_Display(0, 10, 10);

 NeoPixel_Display(0, 5, 15);

 NeoPixel_Display(0, 0, 20);

 NeoPixel_Display(5, 0, 15);

 NeoPixel_Display(10, 0, 10);

 NeoPixel_Display(15, 0, 5);

 Wait(100);

 }

NeoPixel1.C

Vary the color with buttons

RB5: Red gets brighter (+1)

RB4: Red gets dimmer (-1)

RB3: Green gets brighter (+1)

RB2: Green gets dimmer (-1)

RB1: Blue gets brighter (+1)

RB0: Blye gets dimmer (-1)

RED = 0;

GREEN = 0;

BLUE = 0;

while(1) {

 if(RB5) RED += 1;

 if(RB4) RED -= 1;

 if(RB3) GREEN += 1;
 if(RB2) GREEN -= 1;

 if(RB1) BLUE += 1;

 if(RB0) BLUE -= 1;

 LCD_Move(1,0); LCD_Out(RED, 3, 0);

 LCD_Move(6,0); LCD_Out(GREEN, 3, 0);

 LCD_Move(11,0); LCD_Out(BLUE, 3, 0);

 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);

 NeoPixel_Display(RED, GREEN, BLUE);

 Wait(50);

 }

NeoPixel2.C

Display time as a clock

Red = seconds

Green = minutes

Blue = hours

Note 1: Uses global variables that are arrays
Pass data from C to assembler using global variables

One byte for each color of each pixel (R / G / B)

12-element NeoPixel used here

// Global Variables

unsigned char PIXEL @ 0x000;

const unsigned char MSG0[20] = "NeoPixel2.C ";

unsigned char RED[12];

unsigned char GREEN[12];

unsigned char BLUE[12];

Note 2: A subroutine fills in the array
All LEDs off (000) except for three (hour, minute, second)

Makes it easier for the main routine (bottom up programming)

void Update_RGB(char r, char g, char b)

{
 unsigned char i;

 for (i=0; i<16; i++) {

 RED[i] = 0;

 GREEN[i] = 0;

 BLUE[i] = 0;

 }

 RED[r] = 50;

 GREEN[g] = 50;

 BLUE[b] = 50;

 }

Note 3: Timing is critical
Compute the current time

Update the arrays (RED, GREEN, BLUE), then

Drive the NeoPixel

When you start the NeoPixel driver routine, don't do anything else

A 50us pause is interprited as the end of message

void NeoPixel_Display(void)

{
 PIXEL = GREEN[0]; asm(" call Pixel_8 ");

 PIXEL = RED[0]; asm(" call Pixel_8 ");

 PIXEL = BLUE[0]; asm(" call Pixel_8 ");

 PIXEL = GREEN[1]; asm(" call Pixel_8 ");

 PIXEL = RED[1]; asm(" call Pixel_8 ");

 PIXEL = BLUE[1]; asm(" call Pixel_8 ");

 (etc)

 }

Top Level: Update time (hour, minute, second)

while(1) {

 SEC = (SEC + 1) % 12;

 if (SEC == 0) {

 MIN = (MIN + 1) % 12;

 if (MIN == 0) {

 HOUR = (HOUR + 1) % 12;

 }
 }

 LCD_Move(1,0);

 LCD_Out(HOUR, 0, 2);

 LCD_Write(':');

 LCD_Out(MIN, 0, 2);

 LCD_Write(':');

 LCD_Out(SEC 0, 2);

 Update_RGB(SEC, MIN, HOUR);

 NeoPixel_Display();

 Wait(62);
 }

Final Results
2468 bytes (1234 lines of assembler)

Lots more than I would like to write or to debug

That's also only 3.8% of program memory. A PIC can do a lot more.
Memory Summary:

Program space used 9A4h (2468) of 10000h bytes (3.8%)

Data space used 4Bh (75) of F80h bytes (1.9%)

EEPROM space used 0h (0) of 400h bytes (0.0%)

ID Location space used 0h (0) of 8h nibbles (0.0%)
Configuration bits used 0h (0) of 7h words (0.0%)

