
MPLAB8 and Flow Charts
ECE 376 Embedded Systems

Jake Glower - Lecture #3
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Boot Loaders

Programming a PIC Chip

Option 1: External Programmer such as PICStart-Plus

Option 2: Boot Loader

Boot Loader

Program on the PIC Chip

Located at 0x000 to 0x799

- Code must be offset by 0x800

Watches the serial port

If it sees a carriage return within 3 seconds of reset

- It clears out the old program

- It waits for a new program to be send via the serial port

Assembler in MPLAB8

Step 1. Create a new directory.

Located on thumb drive works well

X:\ECE376\ASM\Count

Step 2. Start MPLAB8

Step 3. Click on File New Project

Project Wizard if this is a new project

This takes you through the process of starting a

new project (i.e. a new program). Click OK

Device = PIC18F4620 (next)

Program Language is MPASM

Directory for Files: Select your directory

Click on View Project

You should see the following:

Change the default to decimal. Click on Project

Build Options Project

Click on MPASM anc select Decimal. This

results in numbers like 100 representing 100 base

10.

The source file is what you compile.

If this is blank, right click on Source File and

select the ASM file you wish to compile.

If you don't have an ASM file yet, select File New

edit a file, and save it as .ASM

To compile your code, click on Project Bulid All

(or hit key F10)

If your program compiles correctly,

you get the message 'Succeed'

If there is an error in your code (such as a space in line 13 below), you will get an

error message along with a notice which line has a problem

If you want to see what your program looks like, click on View Program Memory

The program is stored in the file .HEX This is a text files that contains the program

in machine language (the OP-Code above)

To download your code to your PIC board,

Power up your PIC board (i.e. plug it in)

Connect the serial cable to a PC

Run a terminal program, such as Hyperterminal or PIC_Flash_Tool

Select the USB Serial Port (COM number varies)

Select the .hex file to download (must be lower case letters)

Hit RESET on your PIC board.

Wait for Program Micro to

light up

Click on Press Program

Micro.

Flow Charts:

Graphical way to explain how a program works

Keep it simple (less than 20 blocks), but

Keep it informative (more than one block)

It also helps if you follow a few rules:

Flow charts should start at the top of the page

The program execution should move down towards the bottom of the page

There should be a single exit point

Flow Chart Symbols
Symbol Image Meaning

Oval Start / End of routine or program

Rectangle Function or operation

Parallelogram Input / Output

Diamond

yes

no
Decision

PIC I/O

The PIC18f4620 chip has 33 I/O lines split into

five ports:

PORTA PORTB PORTC PORTD PORTE

Pins 2..7 33..40 15..18,
24..26

19..22,
27..30

3

Binary
Input

5 8 8 8 3

Binary
Output

5 8 8 8 3

Analog
Input

5 5 - - 3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

+5

gnd

RD7

RD6

RD5

RD4

RC7

RD6

RD5

RC4

RD3

RD2

MCLR

RA0

RA1

RA2

RA3

RA4

RA5

RE0

RE1

RE2

+5

gnd

OSC1

OSC2

RC0

RC1

RC2

RC3

RD0

RD1

PORTA

PORTE

PORTC

PORTD

PORTB

PORTD

PORTC

PORTD

PIC18F4626

Setting Up I/O Ports for Binary I/O

Three registers are associated with each port

PORTx: Defines whether the pin is 0V (0) or 5V (1)

TRISx: Defines whether the pin is input (1) or output (0)

LATx: "Read-modify-write operations on the LATC register read and write the latched

output value for PORTC."

In addition, you need to initialize ADCON1 to 15. This sets all I/O pins to binary.

movlw 0x0F

movwf ADCON1

Count Edges on RB0
#include <p18f4620.inc>

 org 0x800

 clrf TRISA

 movlw 0xFF

 movwf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F

 movwf ADCON1

 clrf PORTC

Loop1:

 btfsc PORTB,0

 goto Loop1

Loop2:

 btfss PORTB,0

 goto Loop2

 incf PORTC,F

 goto Loop1

 end

Count Count Count

Start

Initialize Ports

Wait until RB0=0

Wait until RB0=1
(rising edge)

Increment PORTC

(falling edge)

Random Number Generator
#include <p18f4620.inc>

DIE EQU 0

 org 0x800

 clrf TRISA

 movlw 0xFF

 movwf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F

 movwf ADCON1

Main:

 btfsc PORTB,0

 incf DIE,W

 andlw 0x07

 movwf DIE

 movwf PORTC

 goto Main

Count really

fast
Display Count Count really

fast
Display Count

RB0

RB0=1?

Start

Initialize I/O

Keep rolling

the die

Display Die

Value

yes

no

Init:

Roll:

Display:

Top Down Programming:

#include <p18f4620.inc>

; Variables

DIE EQU 0

; --- Main Routine ---

org 0x800

call Init

Main:

btfsc PORTB,0

call Roll

call Display

goto Main

RB0=1?

Start

Initialize I/O

Keep rolling

the die

Display Die

Value

yes

no

Init:

Roll:

Display:

; --- Subroutines ---

Init:

clrf TRISA

movlw 0xFF

movwf TRISB

clrf TRISC

clrf TRISD

clrf TRISE

movlw 0x0F

movwf ADCON1

return

Roll:

incf DIE,W

andlw 0x07

movwf DIE

return

Display:

movf DIE,W

movwf PORTC

return

end

RB0=1?

Start

Initialize I/O

Keep rolling

the die

Display Die

Value

yes

no

Init:

Roll:

Display:

