
PIC Assembler
ECE 376 Embedded Systems

Jake Glower - Lecture #2
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Programming

The first computer programs were written

in binary (machine code)

Define each bit with a switch

Hit program to record the first line of code

Resulting code looked like this

060000000A128A11F92F1B

0E0FF20083160313870183128701870AFE2FDF

00000001FF

http://www.columbia.edu/cu/computinghistory/norc-4.jpg

Assembler (1951+)
Dates back to 1951: "The preparation of programs for an electronic digital computer,"

Wilkes, Wheeler and Gill (Wikipedia)

Compilers turn assembler in to machine code

Much easier to write than machine code

Still really cryptic

_main

 movlw 0x0F
 movwf ADCON1

clrf TRISC

clrf PORTC

_loop incf PORTC,F

goto _loop

Higher-Level Languages
FORTRAN: 1950's IBM (Wikipedia)

C: 1972 Bell Labs (Wikipedia)

Python: 1991 Guido van Rossum (wikipedia)

Many others

Compiler

Converts C to assembler

Assembler to machine code

Each level

Increases code size 3 - 10x

Reduces speed 3 - 10x
https://www.geeksforgeeks.org/c-programming-language/

Why Assembler?
Closest thing to machine code: it's how computers actually operate

C code is convertered into assembler

- To understand how your C code executes, look at the assembler listing

Direct access to hardware

- 100% control of the processor

Fast and efficient

- Flight controller for the F16 is 16k

- Written in assembler

Why Not Assembler?

Hard to write

- Very cryptic

Throw away code

- Very hard to understand, debug, test, maintain

CISC vs. RISC

CISC: Complex Instruction Set Computing.

Intel Pentium chip: 500+ instructions

Floating point arctangent is one instruction

Fast: Anything you want to do probably has an instruction for it

RISC: Reduced Instruction Set Computing

Only a few instructions are actually used

Optimize the computer for these instructions

Fast: Computer is optimized for the instructions you actually use

PIC Instructions
Only 75 instructions with PIC18F4620 (RISC)

Easier to learn (only 75 instructions)

Harder to use (requires some convoluted logic)

Pretty much all a PIC can do is

Set and clear bits

Read and write from memory (8-bits at a time)

Logic and / or / exclisuve or (8-bits at a time)

Add, subtract

Multiply by two (shift left), and shift right

Multiply two 8-bit numbers

Anything else must be built up using these simple

instructions.

PIC Assembler

Label operation REGISTER, F (W)

Label: optional name you can jump to with a 'goto' command (1st letter cap)

operation: assembler mnemonic for some operation (like clear) (lower case)

REGISTER: RAM address to be operated on

F: Save the result in the register

W: Save the result in the working register

Memory Read & Write

MOVWF PORTA memory write PORTA = W

MOVFF PORTA PORTB copy PORTB = PORTA

MOVF PORTA,W memory read W = PORTA

MOVLW 234 Move Literal to WREG W = 123

Memory Clear, Negation

CLRF PORTA clear memory PORTA = 0x00

COMF PORTA toggle bits PORTA = !PORTA

NEGF PORTA negate PORTA = -PORTA

Addition & Subtraction

INCF PORTA,F increment PORTA = PORTA + 1

ADDWF PORTA, F add PORTA = PORTA + W

ADDWFC PORTA, W add with carry W = PORTA + W + carry

ADDLW Add Literal and WREG

DECF PORTA,F decrement PORTA = PORTA - 1

SUBFWB PORTA,F subtract with borrow PORTA = W - PORTA - c

SUBWF PORTA,F subtract no borrow PORTA = PORTA - W

SUBWFB PORTA,F subtract with borrow PORTA = PORTA - W - c

SUBLW 223 Subtract WREG from # W = 223 - W

Shift left (*2), shift right (/2)

RLCF PORTA,F rotate left through carry (9-bit rotate)

RLNCF PORTA,F rotate left no carry

RRCF PORTA,F rotate right through carry

RRNCF PORTA,F rotate right no carry

Bit Operations

BCF PORTA, 3 Bit Clear f clear bit 3 of PORTA

BSF PORTA, 4 Bit Set f set bit 4 of PORTA

BTG PORTA, 2 Bit Toggle f toggle bit 2 of PORTA

Logical Operations

ANDWF PORTA, F logical and PORTA = PORTA and W

ANDLW 0x23 AND Literal with WREG W = W and 0x23

IORWF PORTA,F logical or PORTA = PORTA or W

IORLW 0x23 Inclusive OR Literal W = W or 0x23

XORWF PORTA,F logical exclusive or PORTA = PORTA xor W

XORLW 0x23 Exclusive OR Literal W = W xor 0x23

Tests (skip the next instruction if...)

CPFSEQ PORTA Compare PORTA to W, skip if PORTA = W

CPFSGT PORTA Compare PORTA to W, Skip if PORTA > W

CPFSLT PORTA Compare PORTA to W, Skip if PORTA < W

DECFSZ PORTA,F decrement, skip if zero

DCFSNZ PORTA,F decrement, skip if not zero

INCFSZ PORTA,F increment, skip if zero

INFSNZ PORTA,F increment, skip if not zero

BTFSC PORTA, 5 Bit Test f, Skip if Clear

BTFSS PORTA, 1 Bit Test f, Skip if Set

Flow Control

GOTO Label Go to Address 1st word

CALL Label Call Subroutine 1st word

RETURN Return from Subroutine

RETLW 0x23 Return with 0x23 in WREG

RETFIE Return from Interrupt

Other Stuff....

NOP No Operation

MULLW Multiply Literal with WREG

MULWF PORTA multiply

Sample Code:

Note: All actions usually pass through the W register.

Examples:

A = 5;
movlw 5 ; move 5 to W

movwf A ; move W to A

A += 5
movlw 5 ; move 5 to W

addwf A,W ; add to A, store the result in W

movwf A ; move W to A

movlw 5 ; move 5 to W

addwf A,F ; add to A, store the result in A

A = B
movff B,A

if (A == B) X = 10;
movf A,W ; move A to W

cpfseq B ; compare A to B, skip if equal

goto End ; no skip, done

movlw 10 ; move 10 to W

movwf X ; move W to X

End: nop

if (A > B) X = 10; else X = 12;
movf B,W ; move B to W

cpfsgt A ; if A > B, skip

goto Else ; false, goto else

If:
movlw 10 ; true, move 10 to X

movwf X

goto End

Else:

movlw 12 ; move 12 to X

movwf X

End:

nop

for (i=1, i<10, i++);
movlw 1 ; i = 1

movwf i

Loop:

incf i,F ; i++

movlw 10

cpfslt i ; skip next command if (i < 10)

goto End ; false - exit

goto Loop ; true, keep looping

End:
nop

do { x = x + 1; } while (x <= 10);

Loop:

incf X,F ; x = x + 1;

movlw 10

cpfsgt X ; skip next command if (x > 10)

goto Loop

End:

nop

Note: There are several way to do the same thing. Some are more efficient than

others. As a result

Different C compilers will give different versions of the compiled code

Decompilers exist (Convert assembler to C) - but you have to know what C compiler you

used.

An expert assembler programmer will always give more efficient code than a C compiler.

(Typical 3x to 10x smaller code). Some C compilers claim 80% efficiency - but that's fr

specific test cases.

Assembler is difficult to write and almost impossible to read.

Status Register
STATUS

Pin 7 6 5 4 3 2 1 0

Name - - - N OV Z DC C

N: Negative bit:

1 = Result was negative

0 = Result was positive

Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

C: Carry/borrow bit. For ADDWF, ADDLW, SUBLW and SUBWF instructions:

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurreRP1: RP0:

Sample Programs

Display {1, 2, 3, 4} on {PORTA, PORTB, PORTC, PORTD}

#include <p18f4620.inc>

 org 0x800

 clrf TRISA
 clrf TRISB

 clrf TRISC

 clrf TRISD

 movlw 0x0F

 movwf ADCON1

 movlw 1

 movwf PORTA

 movlw 2

 movwf PORTB

 movlw 3

 movwf PORTC
 movlw 4

 movwf PORTD

Loop:

 goto Loop

 end

1234.lst file
Gives the memory location, machine code, and assembler command

LOC OBJECT CODE LINE SOURCE TEXT

000800 00003 org 0x800

000800 6A92 00004 clrf TRISA
000802 6A93 00005 clrf TRISB

000804 6A94 00006 clrf TRISC

000806 6A95 00007 clrf TRISD

000808 0E0F 00008 movlw 0x0F

00080A 6EC1 00009 movwf ADCON1

 00010

00080C 0E01 00011 movlw 1

00080E 6E80 00012 movwf PORTA

000810 0E02 00013 movlw 2

000812 6E81 00014 movwf PORTB

000814 0E03 00015 movlw 3

000816 6E82 00016 movwf PORTC
000818 0E04 00017 movlw 4

00081A 6E83 00018 movwf PORTD

 00019

00081C 00020 Loop:

00081C EF0E F004 00021 goto Loop

 00022 end

1234.hex file

The .hex file contains the machine code: what you download to the PIC processor

:020000040000FA

:10080000926A936A946A956A0F0EC16E010E806EA9

:10081000020E816E030E826E040E836E0EEF04F0E4
:00000001FF

Example 2: Assembler Operations
A = 3

B = 5

PORTA = A + B

PORTB = B - A

PORTC = A - B

PORTD = A or B

#include <p18f4620.inc>

A equ 0

B equ 1

 org 0x800

 clrf TRISA

 clrf TRISB

 clrf TRISC

 clrf TRISD

 movlw 0x0F

 movwf ADCON1

 movlw 3

 movwf A

 movlw 5

 movwf B

 movf A,W

 addwf B,W

 movwf PORTA

 movf A,W

 subwf B,W

 movwf PORTB

 movf B,W

 subwf A,W

 movwf PORTC

 movf A,W

 iorwf B,W

 movwf PORTD

Loop:

 goto Loop

 end

