
Filters in the s-Plane

Transfer Functions and LaPlace Impedances

In essence, any circuit with an inductor or a capacitor is a filter. Each of these requires a differential equation to

describe the circuit due to the VI relationships being

V = L
dI

dt

for an inductor, or

I = C
dV

dt

for a capacitor. If you assume all functions are in the form of

y = est

(which is the basic assumption behind LaPlace transforms), then differentiation becomes multiplication by 's'

dy

dt
= e ⋅ est = sy

The transfer function of a circuit is short-hand notation for the differential equation relating the input and output.

For example, if a circuit is described by the following differential equation

d3y

dt3
+ 7

d2y

dt2
+ 9

dy

dt
+ 15y = 10dx

dt
+ 3x

in LaPlace notation, this becomes

s3Y + 7s2Y + 9sY + 15Y = 10sX + 3X

or

Y = 


10s+3

s3+7s2+9s+15


X

The gain from X to Y is called the transfer function

G(s) = 


10s+3

s3+7s2+9s+15




Note that this goes either way:

Given a differential equation, you can find the transfer function by replacing each derivative with 's'

Given the transfer function, you can find the differential equation by cross-multiplying and replacing each

's' with
d

dt

Example: Find the differential equation relating X and Y

Y = 


10s+3

s3+7s2+9s+15


X

Solution: Cross multiply

NDSU Filters in the s-Plane ECE 376

JSG 1 April 4, 2020

(s3 + 7s2 + 9s + 15)Y = (10s + 3)X

Replace each 's' with
d

dt

d3y

dt3
+ 7

d2y

dt2
+ 9

dy

dt
+ 15y = 10dx

dt
+ 3x

Analyzing Filtes for Sinusoidal Inputs

The transfer function defines the relationship between X and Y for all 's'. If x(t) is a sinusoid, such as

x(t) = a ⋅ cos (ωt)

then all you care about is the gain at one particular 's'. From Euler's identity

cos (ωt) =
1

2(e jωt + e−jωt
)

Since LaPlace transforms assume that all functions are in the form of

y(t) = est

this means that x(t) only exists at s = and . Likewise, you only care about the gain at these two valuesjω s = −jω
of 's'. Actually, you only need to analyze one of these: the other will just be the complex conjugate

Example: Find y(t) assuming

Y = 


10s+3

s3+7s2+9s+15


X

and

x(t) = 2 cos (4t) + 3 sin (4t)

Solution: x(t) is zero everywhere except for when . So, analyze G(s) at s = j4s = ±j4

X = 2 − j3

s = j4

Y = 


10s+3

s3+7s2+9s+15




s=j4

X = (−0.138 − j0.372)(2 − j3)

Y = −1.394 − j0.330

meaning

y(t) = −1.394 cos(4t) + 0.330 sin(4t)

When you analyze G(s) at , the answer will be a complex number:s = jω

The real part is cosine,

The imaginary part is minus sine

NDSU Filters in the s-Plane ECE 376

JSG 2 April 4, 2020

If you have multiple inputs, you can use superposition to analyze each frequency separately.

Example: Determine y(t) assuming

Y = 


10s+3

s3+7s2+9s+15


X

x(t) = 3 cos(4t) + 5 sin(6t)

Solution: Treat this as two separate problems:

x(t) = 3 cos(4t)

s = j4

Y = 


10s+3

s3+7s2+9s+15




s=j4
(3 + j0)

Y = 0.415 − j1.117

y1(t) = 0.415 cos(4t) + 1.117 sin(4t)

x(t) = 5 sin(6t)

s = j6

Y = 


10s+3

s3+7s2+9s+15




s=j6
(0 − j5)

Y = −0.642 + j0.640

y2(t) = −0.642 cos(6t) − 0.640 sin(6t)

The total answer is then

y(t) = y1 + y2

y(t) = 0.415 cos(4t) + 1.117 sin(4t) − 0.642 cos(6t) − 0.640 sin(6t)

NDSU Filters in the s-Plane ECE 376

JSG 3 April 4, 2020

Analysis of Filters: Bode Plots

Analyzing filters for sinusoidal inputs is fairly easy: just plug . If you want to look at how a filter behavess = jω
over a range of frequencies, you can do this in MATLAB as follows

Example: Plot the gain vs. frequency for the following filter from 0 to 20 rad/sec

G(s) = 


2s

s2+2s+10




Matlab Code:

w = [0:0.01:10]';
s = j*w;
G = 2*s ./ (s.^2 + 2*s + 10);
plot(w,abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

Gain vs. Frequency for G(s)

Note that the plot (termed a Bode plot) is a good way to describe how this filter behaves.

Frequencies near 3 rad/sec are passed with a gain as much as 1

Frequencies far from 3 rad/sec are rejected (gain goes to zero)

Filter Design: Poles and Zeros

While analyzing a given filter is easy and straight-forward, designing a filter is a little more tricky. One way to

help see how the transfer function relates to the gain of a filter is to look at the filter's poles and zeros.

In general, G(s) will have a numerator and a denominator polynomial

G(s) = k
z(s)

p(s)



The zeros are the roots of the numerator polynomial

NDSU Filters in the s-Plane ECE 376

JSG 4 April 4, 2020

The poles are the roots of the denominator polynomial.

Graphically, the vector is equal to the vector from -5 to the point s. This means another way to interpret(s + 5)

the gain of a filter is

G(s) = k ⋅
Π(distance from the zeros to jω)

Π(distance from the poles to jω)

or, in other words

Place zeros near frequencies where you want the gain to be small (multiply by a small number)

Place poles near frequencies where you want the gain to be large (divide by a small number)

Types of Filters

Filters are categorized into different types:

Filter Type Characteristic Example

Low-Pass Low-frequency gain is large (pass)

High-frequency gain is small (reject)




10

s+10



High-Pass High-frequency gain is large (pass)

Low-frequency gain is smalle (reject)



10s

s+10



Band-Pass High-frequency gain is small

Low frequency gain is small

Mid-range frequency is large




2s

(s+1+j50)(s+1−j50)




A filter's order is the number of poles the filter has. In general, the more poles a filter has, the better the filter.

Certain pole and zero locations also have special names as well. These have certain characteristics:

RC Filter:

An n-pole RC filter has all n-poles on the real axis.

It's advantage is you can build it with a passive RC filter (good)

It's problem is it's a pretty poor filter.

For example, the gain of

G(s) = 


10

s+10



n

for n=1, 2, 3, and 4 is shown below. Note that

As n increases, the high-frequency gain gets smaller and smaller (good)

However, the gain below 5 rad/sec starts to droop more an more (bad)

NDSU Filters in the s-Plane ECE 376

JSG 5 April 4, 2020

w = [0:0.1:50]';
s = j*w;
G = 10 ./ (s+10);
plot(w,abs([G,G.^2,G.^3,G.^4]));
xlabel('rad/sec');
ylabel('gain');

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

n=1

n=2

n=5

Gain of and RC filter, , for n=1 (blue) to n=4 (cyan)


10

s+10



n

Butterworth Filter

If you use complex poles, you can do better. For example, take the case of n=5.

A 3rd-order RC filter with a corner at 10 rad/sec is

G = 


10

s+10



5

One of these poles has to be real. The other four, however, could be moved along the circle centered at the origin

with a radius of 10. As you increase the angle of these poles, the gain at j10 increases. If you go too far, the gain

at j10 starts to go above one.

A Butterworth filter is the farthest you can slide the poles while keeping the maximum gain less than one

It turns out, the formula for an n-th order Butterworth filter is fairly easy:

The magnitude of the poles is equal to the corner frequency

The angle between poles is 
1800

n



NDSU Filters in the s-Plane ECE 376

JSG 6 April 4, 2020

For example, the location of a Butterworth filter with a corner at 1 rad/sec is given below:

N=2 N=3 N=4 N=5 N=6

zeros none none none none none

poles −1∠ ± 450
−1

−1∠ ± 600

−1∠ ± 22.50

−1∠ ± 67.50

−1

−1∠ ± 360

−1∠ ± 720

−1∠ ± 150

−1∠ ± 450

−1∠ ± 750

-10 -5 0 5 10 15

-j5

0

j5

j10

-j10

Pole Location for a 5th-Order Butteworth Filter with a Corner at 10 rad/sec

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

n = 2

n = 5

Gain of a Butterworth Filter for n=2 (red), 3 (magenta), 4 (blue), 5 (green)

NDSU Filters in the s-Plane ECE 376

JSG 7 April 4, 2020

Note that with a Butteworth filter,

The more poles you have the closer it gets to an ideal low-pass filter.

All poles have the same amplitude

All poles have an equal spacing between them

Chebychev Filter

If you can tolerate a gain larger than 1.00, you can do even better. These filters are called Chebychev Filters.

Unlike Butteworth filters, there are an infinite number of Chebychev filters - each depending upon how much

above 1.000 you allow the gain to reach.

The net result is a Chebychev filter is like a Butterworth filter, only

The poles are located on an squashed circle which is stretched out past the bandwidth, and

The poles are stretched further away.

From SciLab, the location of the poles for a Chebychev filter with a 0.2 ripple are given below.

N=2 N=3 N=4 N=5 N=6

zeros none none none none none

poles −1.60∠ ± 50.70
−0.85

−1.21∠ ± 69.50

−0.72∠ ± 38.50

−1.11∠ ± 77.80

−0.48

−0.76∠ ± 59.30

−1.06∠ ± 82.00

−0.47∠ ± 36.10

−0.81∠ ± 69.80

−1.04∠ ± 84.40

-10 -5 0 5 10 15

-j5

0

j5

j10

-j10

Pole Location for a 5th-Order Chebychev Filter with a Corner at 10 rad/sec

NDSU Filters in the s-Plane ECE 376

JSG 8 April 4, 2020

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (rad/sec)

Gain

n = 2

n = 3

n = 4

n = 5

Gain of a Type-1 Chebychev Filter with 0.2 Ripple

fminsearch()

Another way to design filters is to use the function fminsearch in MATLAB. This routine finds the minimum of

a function.

For example, suppose you want to find the square root of two. First, write an m-file in MATLAB

% function cost.m

function y=cost(z)

e = z*z - 2;
y = e*e;
end

The minimum of this function will be zero when z = 1.414. You can iterate in MATLAB to find the square root

of two

>> cost(4)

 196

>> cost(3)

 49

>> cost(2)

 4

NDSU Filters in the s-Plane ECE 376

JSG 9 April 4, 2020

>> cost(1.414)

 3.6482e-007

You can also find this with fminsearch

>> [a,b] = fminsearch('cost',4)

a =

 1.4143

b =

 1.5665e-008

fminsearch iterates to find the minimum of the function called cost. The solution it found was 1.4143 which

resulted in an error of 1.566e-8

Problem: Determine a filter of the form

G(s) =





a


s

2+bs+c

s

2+ds+e




 ≈






1 ω < 4

0 otherwise

which has a gain vs frequency equal to

G(s) = 1 for frequencies less than 4 rad/sec, and

G(s) = 0 for frequencies above 4 rad/sec.

Step 1: Create an m-file where you pass it five numbers (a, b, c, d, e) and it returns how 'good' this filter is.

Make the minimum when it is equal to the ideal filter.

To write this function,

Compute G(s) for frequencies between 0 and 10 rad/sec.

Calculate the difference between the gain of G(s) and the ideal gain

Define the cost (goodness of the filter) to be the sum-squared error

NDSU Filters in the s-Plane ECE 376

JSG 10 April 4, 2020

function [J] = costf(z)
 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);

 w = [0:0.01:10]';
 s = j*w;
 Gideal = 1 .* (w < 4);

 G = a ./ ((s.^2 + b*s + c) .* (s.^2 + d*s + e));

 E = abs(Gideal) - abs(G);

 J = sum(E .^ 2);

 end

Now optimize { a, b,c,d,e } using fminsearch

>> [a,b] = fminsearch('costf',10*rand(1,5))

a = 36.6716 0.8314 12.3599 2.1860 3.1799
b = 13.0720

meaning

G(s) =





36.67


s

2+0.8314s+12.3599

s

2+2.1860s+3.1799






-j10 -j9 -j8 -j7 -j6 -j5 -j4 -j3 -j2 -j1 0 j j2 j3 j4 j5 j6 j7 j8 j9 j10
0

0.2

0.4

0.6

0.8

1

1.2

Gain

pole at -0.45 + j3.49

pole at -1.09 + j1.41

NDSU Filters in the s-Plane ECE 376

JSG 11 April 4, 2020

