NDSU

Timerl Compare

September 22, 2016

Timerl Compare Mode:

Drive a pin high or low at a precisely controlled time

Interrupt Description Input Output Conditions Enable Flag
Timer 1 Trigger after N events RCO none N = (PS)(Y) TMR1ION =1 | TMR1IF
N=1.2" TMRICS =1 T1ICON=0x81: PS=1 TMR1IE=1
100ns to 0.52 sec T1CON =0x91: PS=2 TMR1IP=1
ose TICON = 0xAl: PS=4 PEIE=1
- T1CON=0xB1l: PS=38
TMR1 =-Y
Timer 1 Drive a pin high or low at a 0OSC/4 RC2 |Interrupt when CCPR1 = TMR1 CCPlIE=1 CCP1IF
Compare precise time CCP1CON = 0x08: Set RC2 TMR1ON =1
Mode 1 Interrupt when TMR1 = CCP1CON = 0x09: Clear RC2 PEIE=1
CCPR1 CCP1CON = 0x0A: no change
Timer 1 Drive a pin high or low at a OSC/4 RC1 |Interrupt when CCPR2 = TMR1 CCP12E=1 | CCP2IF
Compare precise time CCP2CON = 0x08: Set RC1 TMR1ON =1
Mode 2 Interrupt when TMR1 = CCP2CON = 0x09: Clear RC1 PEIE=1
CCPR2 CCP2CON = 0x0A: no change

The PIC we use is able to measure time to 100ns. If you want to drive an output pin high or low at a
precise time (accurate to 100ns), Timerl compare interrupts are used.

There are several reasons you might want to do this:
+ To output a precise frequency, the 1/O pins need to be driven high/low at a precise time
« To generate a pulse with a precise duration

- To output a voltage between 0V and 5V, you can use vary the duty cycle of an 1/0 pin (termed
pulse with modulation). Timerl Compare allows you to adjust this duty cycle very precisely.

Output a Precise Frequency: Capturel.C
Problem: Output the note F4 (349.228Hz) on pin RCO

Solution: To generate this frequency, you need to toggle RCO every 14317 clocks (rounded down)

2-349.228Hz

N = (M) = 14317.29

Assume Timerl is set up with PS =1 and TMR1 = 0. To trigger a Timerl interrupt at time 14317, just set
CCPR1 = 14317

When TRM1 = CCPR1, the interrupt triggers and you toggle RC0. The next interrupt should be 1431
clocks later, so increment CCPR1 by 14317

CCPR1 += 14317

The next next interrupt should then be 14317 clocks after that. And so on and so on.

Essentially, each interrupt you
- Toggle RCO, and
- Set up the next interrupt 14317 clocks in the future, from the previous interrupt.

JSG

N DSU Timerl Compare September 22, 2016

Code: Interrupt Service Routine
void interrupt IntServe(void)

if (TMRLIF) {
TIME = TIME + 0x10000;

TMR1IF = O;
3
it (CCP1LIF) {
RCO = IRCO;
CCPR1 += 14317;
CCP1IF = 0;
}
}
Interrupt Set Up:
// set up Timerl for PS = 1
TMR1CS = 0O;
T1CON = 0x81;
TMR1ON = 1;
TMR1IE = 1;
TMR1IP = 1;
PEIE = 1;
// set up Compare for no change
CCP1CON = Ox0A;
CCP1IE = 1;
PEIE = 1;

// turn on all interrupts
GIE = 1;

That's pretty much it: interrupts do all the work from here on.

d MEASURE

CH1
Freq
9439,2Hz

CH1
Pos Width
1.432ms

CH1

Neg Width
1.432ms
CH1

Period
2.864ms

CH1
None

e T

Comparel.C: RCO outputs a 349.228Hz using Timerl Compare interrupts

JSG -2 -

N DSU Timerl Compare September 22, 2016

If you change the number 14317 to a variable and change it with the key pressed, you can build an 8-key
piano where the notes are precise (within 1/2 clock).

Generating a Precise Pulse Width
Problem: Every time you press RBO, output a pulse that is precisely 10ms long.

Solution: Use two different interrupts:

« INTO records the time that the button was pressed (time of rising edge on RB0). RCO is set at that
time.

« Comparel kicks in 10ms later. At that time, RCO is cleared.

RBO |
RCO ‘ 10ms ‘
} !
INTO Timerl Compare 1
Set RC2 Clear RC2

Note that 10ms is equal to 100,000 clocks - more than TMR1 can count up to (max = 65,536: it's a 16-bit
counter.) To bring this in range, use a pre-scalar of 8 for TMR1. With this

10ms = 100,000/ 8 = 12,500
Comparel interrupt should kick in 12,500 counts on TMR1 after the INT interrupt:

Code: Interrupt Service Routine:

// Interrupt Service Routine

void interrupt IntServe(void)
{
if (INTOIF)
RCO = 1;
CCPR1 = TMR1 + 12500; // 10ms with PS = 8
INTOIF = 0O;

3

if (TMR1IF) {
TIME = TIME + 0x10000;
TMRLIF = O;

s

if (CCP1IF) {
RCO = 0;
CCP1IF = 0;
3

Interrupt Set Up:

// set up INTO for rising edge
INTEDGO = 1;
INTOIE = 1;

JSG -3-

N DSU Timerl Compare

TRISBO

// set up
TMR1CS
TICON = O
TMR1ON
TMR1IE
P

September 22, 2016

rl1 for PS = 8

-1
D

RPRRPX O3 R

TMR11

PEIE
// set up merl Compare for no change

CCP1CON = Ox0A;

CCP1IE = 1;

PEIE = 1;

Resulting Signal on RCO:

wiwiwr D
=

=1

(EEEEZR NN

Compare2.c: A 10ms pulse is generated every time you press RBO

Note that you could also use pin RC2, where the Timerl Compare interrupt automatically clears RC2
when TMR1 = CCPR1.

Example 3: Pulse Width Modulation (PWM.C)

A third use of Timerl Compare is to generate a pulse width modulation with a precise duty cycle. The
idea is this:

- Set up Timerl to run with a pre-scalar of 1.

- Every Timerl interrupt you set RCO (TMR1 = 0x0000)
« When Timerl = CCPR1, clear RCO

By adjusting CCPR1 from 0x0001 to OxFFFF, you can change how long RCO is on from
+ 1clock out of a period of 65,536 clocks (0.0015%), to
+ 65535 clocks out of a period of 65,536 clocks (99.998%),
+ With 65,536 steps between 0% and 100% on

This is called pulse width modulation.

JSG -4 -

N DSU Timerl Compare September 22, 2016

Actually, you can't quite get to 0% or 100%. It takes about 50 clocks to call an interrupt. The min and
max duty cycle is then

+ min: 50/ 65,536 (0.076%)
+ max: 65,486 / 65,536 (99.924%)

6.5536ms

! |

Timerl Interrupt
TMR1 = 0x0000

Comparel Interrupt
TMR1 = CCPR1

To generate a waveform which in 1.00V on averatge, we want a duty cycle of 20%
v
PWM = (W) =20%
CCPR1 should then b 25% of its maximum value:
CCPR1=0.25-65,536 = 13,107

Code: PWM.C

Interrupt Service Routine:

// Global Variables
unsigned long int TIME;

// Interrupt Service Routine

void interrupt IntServe(void)
{
it (TMR1IF) {
RCO = 1;
TIME = TIME + 0x10000;
TMR1IF = O;

s

if (CCP1IF)
RCO = O;
CCP1IF = O;
3

3

JSG -5-

NDSU

Timerl Compare

September 22, 2016

Interrupt Set-Up:

// set up Timerl for PS =1
TMR1CS = O0;
T1CON = 0x81;
TMR1ON = 1;
TMR1IE = 1;
TMR1IP = 1;
PEIE = 1;

// set up Timerl Compare for no change
CCP1CON = Ox0A;
CCP1IE = 1;
PEIE = 1;

Main Routine:

CCPR1 = 13107; // 20% duty cycle
while(1) {

LCD_Move(0,0);
}

If you change CCPRL, it changes the duty cycle as

CCPR1
%ON = (SR) . 100%

-

T T T T rrrrrr-vr-{vrgrrrrrreT

:

CH1 2.00¥

Trig'd

o L

LCD_Out(TIME + TMRL, 7);

6.550ms

CH1
Mean
1.03V

CH1
Pos Width
1.310ms

None
arey

PWM.C: A 20% duty cycle square wave is output on RCO, resulting in its average voltage being 1.000 (20% of 5.00V)

JSG

