
A/D Conversion (Analog Inputs)

Sadly, the world isn't digital. Temperature, speed, position, flow, time, magnetic field strength are all analog signals:

i.e. there are many shades of grey. The A/D converter is a component in your processor that lets you read voltages

over the range of (0V .. 5V).

A/D

PIC

Microcontroller D/A
Real World

(Analog)
Computer World

(Digital)
Real World

(Analog)

Computer World

(Digital)

Input Output

A/D converters convert analog signals to digital (computer input).
D/A converters convert digital signals to analog (computer output)

First, some definitions:

A/D: Analog to Digital. Converts data from the real world (analog) to the computer world (digital).

D/A: Digital to Analog. Converts data from the computer world (digital) to the analog world (analog).

Sampling Rate: The number of samples per second.

Quantization Level: The resolution of the A/D or D/A converter. How many mV corresponds to one count.

Quantization Noise: The difference between the real signal (analog) and the digital signal (digital)

Quantization Levels

Sampling Time

Analog Signal

Digital Signal

Definitions: Due to using integers, the analog signal (red) is slightly different from the digital signal (blue)

A/D converters allow a microcontroller to see what's happening in the real world. The A/D on the PIC processor can

read voltages over the range of 0..5V. If you can convert what you want to measure (light, temperature, speed,

position, etc.) to a voltage, a PIC can read it. That's actually really powerful: Digikey sells over 10,000 different

sensors, many with a resistance or a voltage output. If you build a voltage divider to convert resistance to voltage, a

PIC can read many of these sensors with the A/D converter.

This lecture focuses on the A/D converters and how to read analog signals.

NDSU A/D Conversion ECE 376

JSG - 1 - July 15, 2020

D/A Converters

The heard of an A/D converter is actually a D/A converter. Likewise, in order to understand A/D converters, you

have to understand D/A converters.

The simplest D/A converter is the R-2R ladder. The following circuit, for example, converts a 4-bit binary number to

analog signal whose voltage is

Vo =
1

2
(RC3) +

1

4
(RC2) +

1

8
(RC1) +

1

16
(RC0)

(hint: use superposition and Thevenin equivalents to verify this).

RC3

RC2

RC1

RC0

20k

10k
20k

10k
20k

10k

20k

20k

Output

If RC3:RC2:RC1:RC0 represents a binary number from 0..15 and the PIC outputs 0V/5V, the output voltage is

Vo = 


binary data

16

 ⋅ 5V

In general, for an R-2R ladder, the output voltage for an N-state R-2R ladder with 0V/5V inputs is

.Vo = 


binary data

2N


 ⋅ 5V

NDSU A/D Conversion ECE 376

JSG - 2 - July 15, 2020

A/D Converters

Once you understand D/A converters, you can understand an A/D converter.

The way an A/D converter works is this:

First, an analog signal is sent (Signal in the figure below).

Next, an counter starts counting from 0 up to 1023 (0x000 to 0xFFF for a 10-bit A/D like the one on your

PIC chip)

This count goes to a D/A converter, which converts the count to an analog voltage going from 0V (0x000) to

5V (0xFFF).

A comparitor compares the analog signal to the D/A output. Once the D/A output exceeds the analog signal,

a latch is triggered. This saves the present value of the counter.

Signal (0 to 5V)

10-bit

Counter
Go

10-bit

D / A

0..5V

Done

Latch

10

10-bit binary number

+

-

Comparitor

Clock

clock

(0 = finished)

clk

clr

ADRESL

ADRESH

Hardware for an A/D converter

Start A/D Latch Counter

5V

0V

Analog Signal

D/A Output

Conversion Time (9us)

Timing for an A/D conversion: The value of the counter when the D/A output exceeds the analog signal is the A/D conversion

NDSU A/D Conversion ECE 376

JSG - 3 - July 15, 2020

Note: With this approach, the reading is linear with voltage:

Reading = 


Voltage

5

 ⋅ 2n

For a 10-bit A/D

Reading = 


V

409.6



It also takes time to do an A/D conversion. With the A/D on your PIC board, it's about 9us / conversion, giving a

maximum sampling frequency of

 .max (Fsample) = 


1

9us


 = 111kHz

A/D Conversion on the PIC18F4626:
PORTA is can be used for analog or digital inputs. If you want to use PORTA, ADCON0, ADCON1, and TRISA

need to be set up to tell the PIC chip how to use PORTA. The pins and bit assignments for an analog input follow:

Address Register

Name

Bit

7 6 5 4 3 2 1 0

0xFC0 ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

0xFC1 ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

0xFC2 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GODONE ADON

0xFC3 ADRES 16 bit register (0..65535)

ADCON0:

CHS: Channel to convert: You must wait 14us if you change channels

- 0000 = Channel 0 (RA0/AN0)

- 0001 = Channel 1 (RA1/AN1)

- 0010 = Channel 2 (RA2/AN2)

- 0011 = Channel 3 (RA3/AN3)

- 0100 = Channel 4 (RA5/AN4)

- 0101 = Channel 5 (RE0/AN5)

- 0110 = Channel 6 (RE1/AN6)

- 0111 = Channel 7 (RE2/AN7)

- 1000 = Channel 8 (RB2/AN8)

- 1001 = Channel 9 (RB3/AN9)

- 1010 = Channel 10 (RB1/AN10)

- 1011 = Channel 11 (RB4/AN11)

- 1100 = Channel 12 (RB0/AN12)

ADON: 1 = turn on the A/D (and draw an additional 180uA)

GODONE: Start the A/D conversion. Conversion is complete when bit GODONE = 0 (about 9us later)

NDSU A/D Conversion ECE 376

JSG - 4 - July 15, 2020

ADCON1

bit 5 VCFG1: Voltage Reference Configuration bit (VREF- source)

1 = VREF- (AN2)

0 = VSS

bit 4 VCFG0: Voltage Reference Configuration bit (VREF+ source)

1 = VREF+ (AN3)

0 = VDD

PCFG3:PCFG0 determine whether certain pins are analog inputs (A) or binary I/O (D)

PCFG3:

PCFG0

RB0

AN12

RB4

AN11

RB1

AN10

RB3

AN9

RB2

AN8

RE2

AN7

RE1

AN6

RE0

AN5

RA5

AN4

RA3

AN3

RA2

AN2

RA1

AN1

RA0

AN0

0000 A A A A A A A A A A A A A

0001 A A A A A A A A A A A A A

0010 A A A A A A A A A A A A A

0011 D A A A A A A A A A A A A

0100 D D A A A A A A A A A A A

0101 D D D A A A A A A A A A A

0110 D D D D A A A A A A A A A

0111 D D D D D A A A A A A A A

1000 D D D D D D A A A A A A A

1001 D D D D D D D A A A A A A

1010 D D D D D D D D A A A A A

1011 D D D D D D D D D A A A A

1100 D D D D D D D D D D A A A

1101 D D D D D D D D D D D A A

1110 D D D D D D D D D D D D A

1111 D D D D D D D D D D D D D

ADCON2

ADFM: A/D Result Format Select bit

1 = Right justified

0 = Left justified

Result from an A/D Conversion

10-bit Result = abcdefghij

ADFM ADRESH ADRESL

0 abcd efgh ij00 0000

1 0000 00ab cdef ghij

bit 6 Unimplemented: Read as ‘0’

NDSU A/D Conversion ECE 376

JSG - 5 - July 15, 2020

bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits

110: Automatically restart the A/D conversion every 16th clock

000: Manual operation of the A/D (user must set GODONE to start conversions)

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits

101 = FOSC/16 (use with a 20MHz crystal)

Example: Set up the A/D so that

PORTA/E are analog inputs, PORTB/C/D are binary

The conversion will be right justified (ADFM = 1)

A 20MHz crystal is used. (ADCS = 10: FOSC / 32)

Solution:

7 6 5 4 3 2 1 0

ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

1 0 0 0 0 1 0 1

7 6 5 4 3 2 1 0

ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

0 0 0 0 0 1 1 1

7 6 5 4 3 2 1 0

ADCON0 — — CHS3 CHS2 CHS1 CHS0 GODONE ADON

0 0 0 0 0 0 0 1

The code you need to include to initialize the A/D converter is thus:

// Turn on the A/D converter
 TRISA = 0xFF;
 TRISE = 0x0F;
 ADCON2 = 0x85;
 ADCON1 = 0x07;
 ADCON0 = 0x01;

The code you need to read the analog input on pin c is

unsigned int A2D_Read(unsigned char c)
{
 unsigned int result;
 unsigned char i;
 c = c & 0x0F;
 ADCON0 = (c << 2) + 0x01; // set Channel Select
 for (i=0; i<3; i++); // wait 2.4us (approx)
 GODONE = 1; // start the A/D conversion
 while(GODONE); // wait until complete (approx 8us)
 return(ADRES);
}

NDSU A/D Conversion ECE 376

JSG - 6 - July 15, 2020

Note:

A2D_Read(0) Read the voltage on RA0, return 0 (0V) to 1023 (5V)

A2D_Read(1) Read the voltage on RA1, return 0 (0V) to 1023 (5V)

A2D_Read(2) Read the voltage on RA2, return 0 (0V) to 1023 (5V)

A2D_Read(3) Read the voltage on RA3, return 0 (0V) to 1023 (5V)

etc Read the voltage on RA0

Fun with A/D Converters

The A/D input allows you to input numbers (0 to 1023) into the PIC processor with a potentiometer. This illustrates

some of the things this allows you to do:

Electronic Trombone: Set the frequency using the analog input. Play a note when you press RB0.

LED Flashlight: Vary the brightness of a NeoPixel using the potentiometer from 0% to 100% on in 255

steps.

LED Flashlight (take 2): Vary the color of the NeoPixel using the potentiometer

Stepper Motor Position Control (Telerobotics): Have a stepper motor follow the position of the

potentiometer from 0 steps (A/D = 0) to 200 steps (A/D = 1023).

- This also makes the stepper motor a temperature indicator if the input voltage is temperature

- Or a light indicator

Stepper Motor Speed Controller: Have the speed of the stepper motor set by the analog input

Multi-Meter. Turn your PIC into a volt / ohm / light / temperature meter.

Electronic Trombone:

Requirement: Play notes ranging from 100Hz to 200Hz on pin RC0 as you press RB0. The frequency is continuously

adjustable using the analog input (potentiometer on your PIC board).

From previous code, the following routine plays notes C2 to C2

while(1) {
 if (PORTB) RC0 = !RC0;
 if (RB0) for(i=0; i<4771; i++);
 if (RB1) for(i=0; i<4250; i++);
 if (RB2) for(i=0; i<3786; i++);
 if (RB3) for(i=0; i<3574; i++);
 if (RB4) for(i=0; i<3184; i++);
 if (RB5) for(i=0; i<2837; i++);
 if (RB6) for(i=0; i<2527; i++);
 if (RB7) for(i=0; i<2385; i++);
 }

If you replace the hard-coded numbers with a number based upon the A/D reading, you can vary the frequency on the

fly. In C, the executing time depends upon the code. To get an accurate measure, start with code close to what we'll

need in the end:

NDSU A/D Conversion ECE 376

JSG - 7 - July 15, 2020

 while(1) {
 A2D = A2D_Read(0);
 N = 2000 - 0.5678*A2D;
 if(PORTB) RC0 = !RC0;
 for(i=0; i<N; i++);
 }

Experimentally, the extremes produce:

A/D = 0 N = 2000 f = 116.04Hz

A/D = 1023 N = 1419 f = 154.39Hz

From this,

Hz = 248 - 0.0660N

or

100Hz N = 2243 A/D = 0

200Hz N = 728 A/D = 1023

giving the function

This results in

0V A/D = 0 f = 103.77 Hz

5V A/D = 1023 f = 278.82 Hz

A little more adjustment would get you from 100Hz to 200Hz as you adjust the potentiometer.

LED Flashlight: Brightness Control

Previous code allowed us to drive a NeoPixel using a PIC processor. The global variables RED, GREEN, and BLUE

set the brightness of the NeoPixel from 000 (off or 0mA) to 255 (100% on or 20mA).

To change the brightness of the NeoPixels using the A/D converter, use the following code.

 while(1) {
 A2D = A2D_Read(0);
 X = A2D/4;
 LCD_Move(1,0); LCD_Out(X, 0, 3);

 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);

 Wait(1);
 }

NDSU A/D Conversion ECE 376

JSG - 8 - July 15, 2020

LED Flashlight: Hue Control

Instead of making all colors the same intensity, producing white light, update each color one at a time. As you hold

down one of the buttons, the brightness of that color changes according do the A/D input:

RB2 Blue

RB1: Green

RB0: Red

One version of the main routine to do this:

 while(1) {

 A2D = A2D_Read(0);

 X = A2D / 4;
 if (RB0) RED = X;
 if (RB1) GREEN = X;
 if (RB2) BLUE = X;

 LCD_Move(0,10); LCD_Out(X, 0, 3);
 LCD_Move(1, 0); LCD_Out(RED, 0, 3);
 LCD_Move(1, 5); LCD_Out(GREEN, 0, 3);
 LCD_Move(1,10); LCD_Out(BLUE, 0, 3);

 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);

 Wait(5);
 }

NDSU A/D Conversion ECE 376

JSG - 9 - July 15, 2020

Stepper Motor: Position Control (Telerobotics)

Connect the potentiometer to your arm so that as you move, the potentiometer voltages changes with you. Have the

stepper motor follow the potentiometer as

0V = 0 steps

5V = 200 steps

Proportional in-between

 while(1) {
 A2D = A2D_Read(0);
 REF = A2D * 0.1955;

 if (STEP < REF) STEP = STEP + 1;
 if (STEP > REF) STEP = STEP - 1;

 PORTC = TABLE[STEP % 4];

 LCD_Move(0,8); LCD_Out(REF, 0);
 LCD_Move(1,8); LCD_Out(STEP, 0);

 Wait_ms(20);

 }

Stepper Motor: Light Sensor

Make the stepper motor indicate the light level as

1 Lux 0 steps

100 Lux 200 steps

This is the same as the previous solution:

First, convert light to voltage.

Once it's a voltage, read the voltage with the A/D input and use that to control the stepper position.

NDSU A/D Conversion ECE 376

JSG - 10 - July 15, 2020

Multi-Meter

Turn your PIC board into

A volt meter

An Ohm meter

A light sensor

A temperature sensor

Volt Meter:

 The A/D reading is proportional to voltage

0 = 0.00V

1023 = 5.00V

The calibration function is then

Volt = 0.0047776 * A2D

If you want to display this to 2 decimal places, scale this by 100 (so 100 means 1.00 Volts)

Code:

 while(1) {

 A2D = A2D_Read(0);

 VOLT = 0.488 * A2D;

 LCD_Move(1,8); LCD_Out(VOLT, 5, 2);

 }

Ohm Meter:

You can convert resistance to voltage using a voltage divider. Assuming a 1k resistor

+5V

1k

R

to RA0

NDSU A/D Conversion ECE 376

JSG - 11 - July 15, 2020

V = 


R

R+1000

 5

or the A/D reading will be

A/D = 


R

R+1000

 1023

Solving backwards, you can compute the resistance given the A/D reading

R = 


A/D

1023−A/D

 1000Ω

Code:

 while(1) {

 A2D = A2D_Read(0);
 OHM = 1000.0 * (A2D / (1023.0 - A2D));

 LCD_Move(1,8); LCD_Out(OHM, 5, 0);

 Wait_ms(10);

 }

Light Meter:

The light sensor in your lab kit has a light-dependent resistor:

with a light - resistance relationship of

R ≈
100,000

Lux

Then

Lux =
100,000

R

Substituting for R from the previous sensor

NDSU A/D Conversion ECE 376

JSG - 12 - July 15, 2020

Lux =
100,000




A/D

1023−A/D

 1000

Lux =
(1023−A/D)

A/D
⋅ 100

Code:

 while(1) {

 A2D = A2D_Read(0);

 LUX = ((1023.0 - A2D) / A2D) * 100;

 LCD_Move(1,0); LCD_Out(A2D, 5, 0);
 LCD_Move(1,8); LCD_Out(VOLT, 5, 2);

 Wait_ms(10);

 }

Temperature Sensor

 Also in your lab kits is a temperature sensor:

The resistance / voltage relationship is

R = 1000 ⋅ exp 
3930

T+273
−

3930

298

 Ω

where T is the temperature in degrees C. Solving for T

CelsiusT =





3930

ln 
R

1000

 +

3930

298




 − 273

Substituting for R

T =










3930

ln








A/D
1023−A/D


 1000

1000






+
3930

298









− 273 =






3930

ln 
A/D

1023−A/D

 +

3930

298




 − 273

NDSU A/D Conversion ECE 376

JSG - 13 - July 15, 2020

Code: Include Math.h for the log function (note: in C, log() is base e, log10() is base 10)

#include <pic18.h>
#include <math.h>

The main routine is then (multiplying T by 10x so you can display temperature to one decimal point)

 while(1) {

 A2D = A2D_Read(0);
 CELSIUS = 39300. / (log(A2D / (1023. - A2D)) + 13.1879) - 2730;

 LCD_Move(1,8); LCD_Out(CELSIUS, 5, 1);
 }

NDSU A/D Conversion ECE 376

JSG - 14 - July 15, 2020

