
MPLAB8 and C:
For step-by-step instructions on how to compile and download a program using MPLAB8 and

PICC18, please refer page 3.

If you're not familiar with C or forgot most of what you learned in ECE 173, don't worry. We'll

start with fairly simple C programs and build from there.

If you want to get an A or B in this course, please do the homework and test it on your PIC board.

Writing programs on paper (or copying someone else's code) isn't the same as trying to get it to

work in practice. Besides, this course is a lot more fun if you can see your devices actually

working.

Background

Back in the 1960's, computers were programmed in machine code. The operator would set switches

according to the binary code corresponding to each line of code, push a button, and set the switches for

the next line of code.

Machine code is very cryptic. A program for a PIC which counts on PORTC looks like the following:

060000000A128A11F92F1B
0E0FF20083160313870183128701870AFE2FDF
00000001FF

Assembler is much superior to machine code. Semi-meaningful names represent the valid machine

operations, as described in the previous notes. The previous code would look like the following

_main
clrf TRISC
clrf PORTC

_loop incf PORTC,F
goto _loop

This is a lot easier to understand than the machine code. It is still very cryptic, however. In addition,

assembler has a limited set of commands. The PIC we're using, for example, can

Add, Subtract

Load, Store

Shift left, shift right, and

Do boolean operations.

Using these limited instructions, you can do anything, such as implement a Fourier transform. The

algorithm will be very cryptic, however.

C is a high-level assembler which has some useful functions, such as

multiply, divide,

arrays

for next, do while loops

if statements

Procedure for Compiling a C Program

NDSU MPLAB8 and C ECE 376

JSG - 1 - July 13, 2020

Step 1: Start with a working program. Typically, open a zip file and copy all of its contents to your

z-drive. I'd recomment something like

z:\ECE376\Clock

Step 2: Start MPLAB. Go to the program wizard (just like you did in assembler)

Select your device: PIC18F4620

Select the Hi-Tech C Universal Toolsuite.

This tells the compiler to interprit your code as C code. Note that if this isn't an option under the Active

Toolsuite, there's a problem. This usually means the C compiler is in a read-only directory and needs the

permissions changed by a system administrator.

Assuming that works...

Change the path to your z-drive for where the files are located

Select the C program you want to compile (usually the name of the zip file

NDSU MPLAB8 and C ECE 376

JSG - 2 - July 13, 2020

You should get the following screen. If not, select View Project

You should get the following screen:

* important * Offset your code by 0x800

Your code needs to start at 0x800 - after the boot-loader.

Go to Project - Build Options - Project

NDSU MPLAB8 and C ECE 376

JSG - 3 - July 13, 2020

Under Linker, offset the code by 0x800

note: If your code worked yesterday and doesn't work today, it's probably you forgot to offset your

code by 0x800

Compile y our code just like you did in assembler

Project Build All (or F10)

You should get the following message

Memory Summary:
Program space used 76h (118) of 10000h bytes (0.2%)
Data space used 3h (3) of F80h bytes (0.1%)
EEPROM space used 0h (0) of 400h bytes (0.0%)
ID Location space used 0h (0) of 8h nibbles (0.0%)
Configuration bits used 0h (0) of 7h words (0.0%)

This tells you your code compiled and uses up 118 bytes (out of 64k), 3 bytes of RAM (out of 4k), etc.

This also creates some files

NDSU MPLAB8 and C ECE 376

JSG - 4 - July 13, 2020

Clock.lst

This shows how your C code converts to assembler. A section looks like the following

Clock.hex

This is the machine code you download to your processor

:04000000C7EF7FF0D7
:10FF8E00000E926E000E936E000E946E000E956E25
:10FF9E00000E966E0001FF6F0F0EC16E0001FF5135
:10FFAE00000E806E000E816E000E826E000E836E4D
:10FFBE00000E846E000E00010001FD6F000E0001A8
:10FFCE00FE6F010E00010001FD2500010001FD6F15
:10FFDE00000E00010001FE210001FE6FFDC083FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFE0000F011
:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly

Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

If you don't remember C that much, don't worry: we don't use many of the features of C. I personally

treat C like assembler - only with a multiply command. Another theme you'll see is you can do just about

anything with an IF statement. The code may not be the most efficient - but as long as it's understandable

and works, it's usually good enough. If you really want efficiency, use assembler.

NDSU MPLAB8 and C ECE 376

JSG - 5 - July 13, 2020

C Language Summary

Character Definitions:

Name bits range

char 8 -128 to +127

unsigned char 8 0 to 255

int 16 -32,768 to +32,767

unsigned int 16 0 to 65,535

long 32 -2,147,583,648 to +2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 3.4e-38 to 3.4e38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations

Name Example Operation

+ 1 + 2 = 3 addition

- 3 - 2 = 1 subtraction

* 2 * 3 = 6 multiplication

/ 6 / 3 = 2 division

% 5 % 2 = 1 modulus

++ A++ use then increment

++A increment then use

-- A-- use then decrement

--A decrement then use

& 14 & 7 = 6 logical AND

| 14 | 7 = 15 logical OR

^ 14 ^ 7 = 9 logical XOR

>> 14 >> 2 = 3 shift right. Shift in zeros from left.

<< 14 << 2 = 56 shift left. Shift zeros in from right.

Defining Variables:

int A; A is an integer

int A = 3; A in an integer initialized to 3.

int A, B, C; A, B, and C are integers

int A=B=C=1; A, B, and C are integers, each initialized to 1.

int A[5] = {1,2,3,4,5}; A is an array initialized to 1..5. Note: A[0]=1.

Arrays:

int R[52]; Save space for 52 integers

int T[2][52]; Save space for two arrays of 52 integers.

note: The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

General C Commands:

Conditional Expressions:

! not. !PORTB means the compliment of PORTB.
= assignment
== test if equal.

NDSU MPLAB8 and C ECE 376

JSG - 6 - July 13, 2020

> greater than
< less than
>= greater than or equal
!= not equal

IF Statement

if (condition expression)
{ statement or group of statements
 }

example: if PortB pin 0 is 1, then increment port C:

if (RB0==1) {
 PORTC += 1;
 }

IF - ELSE Statements

if (condition expression)
{ statement or group of statements
 }
else {
 alternate statement or group of statements
 }

Example: if PortB bit 0 is 1, then increment port C, else decrement port C:

if (RB0==1)
 PORTC += 1;
 }
else
 PORTC -= 1;
 }

SWITCH (CASE)

switch(value)
{
 case value: statement or group of statements
 case value: statement or group of statements
 defacult: statement or group of statements
 }

WHILE LOOP

while (condition is true) {
 statement or group of statements
 }

NDSU MPLAB8 and C ECE 376

JSG - 7 - July 13, 2020

DO LOOP

do {
 statement or group of statements
 } while (condition is true);

FOR-NEXT

for (starting value; do while true; changes) {
 statement or group of statements
 }

Infinite Loop

while(1) {
 statement or group of statements
 }

note: Zero is false. Anything other than zeros is true. while(130) also works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to

Declare how this subroutine is called (typically in a .h file)

Declare what the subroutine is.

The format is

returned_variable_type = subroutine_name(passed_variable_types).

Example: Write a subroutine which returns the square of a number:

// Subroutine Declarations

int Square(int Data);

// Subroutines

int Square(int Data) {
 int Result;
 Result = Data * Data;
 return(Result);
 }

NDSU MPLAB8 and C ECE 376

JSG - 8 - July 13, 2020

Standard C Code Structure

So that others can modify your code more easily, a standard structure is to be used. This places all code

in the following order:

//----------------------------------
// Program Name
//
// Author
// Date
// Description
// Revision History
//---------------------------------

// Global Variables

// Subroutine Declarations

#include <pic.h> // where PORTB etc. is defined

// Subroutines

void interrupt IntServe(void){} // holder for interrupts (see week 8)

// Main Routine

void main(void)
{

 TRISA = 0; // all pins on PORTA are output
 TRISB = 0xFF; // all pins on PORTB are input
 TRISC = 0; // all pins on PORTC are output
 TRISD = 0; // all pins on PORTD are output
 TRISE = 0; // all pins on PORTE are output
 ADCON1 = 15; // PORTA and PORTE are binary (vs analog)
 PORTA = 1; // initialize PORTA to 1 = b00000001
 PORTC = 3; // initialize PORTC to 3 = b00000011

 while(1) {
 PORTD = PORTB; // copy whatever is input to PORTB to PORTD
 };
 }

// end of program

NDSU MPLAB8 and C ECE 376

JSG - 9 - July 13, 2020

C vs Assembler
Assembler is very powerful. In assembler, you have complete control over where your code compiles

and where your variables are stored. Assembler is also very fast and efficient. Assembler is very

difficult to read, however, and tends to be throwaway code. It's easier to start from scratch and ignore

already written assembler code and start over than to modify existing code.

C is a little constraining. However, it is easier to write C code which is understandable and can be reused

with relative ease.

The following examples of C code and its assembler counterpart

1. Binary Outputs

Write a program which sends the numbers {1, 2, 3, 4} to PORTA..D

C-Code

// Subroutine Declarations
#include <pic18.h>

// Subroutines

// Main Routine

void main(void)
{

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 PORTA = 1;
 PORTB = 2;
 PORTC = 3;
 PORTD = 4;

 while(1);

}

Compilation Results:

Memory Summary:
 Program space used 3Ah (58) of 10000h bytes (0.1%)
 Data space used 1h (1) of F80h bytes (0.0%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

This C code compiles into 29 lines of assembler (58 bytes: each instruction is 16 bits or two bytes)

Assembler: 16 instructions

C Code: 29 instructions (81% larger)

NDSU MPLAB8 and C ECE 376

JSG - 10 - July 13, 2020

Example 2: 32-Bit Counter

One nice feature of C is that you have more than just 8-bit variables. You can also use

8-bit variables (char)

16-bit variables (integer)

32-bit variables (long integer)

32-bit floating point numbers (float)

64-bit floating point numbers (double)

When you copy a 32-bit variable into an 8-bit variable

The low 8-bits are copied

The other bits are ignored

Suppose you want to count using a 32-bit variable. This code could be

// Subroutine Declarations
#include <pic18.h>

// Subroutines

// Main Routine

void main(void)
{
 unsigned long int X;

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 X = 0;

 while(1) {
 X = X + 1;
 PORTD = X;
 PORTC = X >> 8;
 PORTB = X >> 16;
 PORTA = X >> 32;
 }
 }

Note: The command X >> 8 shifts X right eight times. This results in

Bits 0..7 going to PORTD

Bits 8..15 going to PORTC

Bits 16..23 going to PORTB, and

Bits 24..31 going to PORTA

NDSU MPLAB8 and C ECE 376

JSG - 11 - July 13, 2020

The compilation results are:

Memory Summary:
 Program space used 86h (134) of 10000h bytes (0.2%)
 Data space used 5h (5) of F80h bytes (0.1%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

The code compiles into 67 lines of assembler (134/2).

Now, the conversion to assembler isn't so easy to follow. The single line fo C code

X = X + 1

compiles into 25 lines of assembler as follows:

The compiler can be pretty tricky as well. Shifting the data to PORTA..D is as follows:

NDSU MPLAB8 and C ECE 376

JSG - 12 - July 13, 2020

X is a 32-bit variables, stored in four bytes in RAM. The C compiler places the low byte at memory

location main@x. The next byte is at main@x+1, and so on.

The net result is

Result:

Assembler: 21 lines of code

C: Compiles into 67 lines of assembler (3.19x larger)

NDSU MPLAB8 and C ECE 376

JSG - 13 - July 13, 2020

In-Line Assembler:

In almost every C language, there is a way to insert assembler code into your C code. With Hi-Tech C,

the commands are

asm(" nop ");

This inserts the assembler command "nop" into the code at this point in your C code.

You can also insert several lines of assembler with the compiler directives #asm and #endasm

#asm
 nop
 nop
 nop
#endasm

Normally you don't want to do this:

assembler is much harder to understand and debug

assembler is much harder to maintain

but

assembler is 3-10 times smaller and faster than C

The times you would do this are

When your compiled C code doesn't fit in your processor. You need to make the code smaller

somehow.

When your compiled C code takes too long to execute. You need to speed it up somehow.

For the latter, what's often done is monitor how much time is spend in each routine. The routine which is

eating up most of your time is then hand-coded into assembler (biggest bang for the buck). This results

in code which is much harder to maintain, but it is faster.

NDSU MPLAB8 and C ECE 376

JSG - 14 - July 13, 2020

Address Register
Name

Bit

7 6 5 4 3 2 1 0

0xF80 PORTA - - RA5 RA4 RA3 RA2 RA1 RA0

0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

0xF84 PORTE - - - - RE3 RE2 RE1 RE0

0xF85 LATA - - LATA5 LATA4 LATA3 LATA2 LATA1 LATA0

0xF86 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0

0xF87 LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0

0xF88 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0

0xF89 LATE - - - - LATE3 LATE2 LATE1 LATE0

0xF92 TRISA - - TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

0xF93 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

0xF94 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

0xF95 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

0xF96 TRISE - - - - TRISE3 TRISE2 TRISE1 TRISE0

0xF9D PEIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

0xF9E PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

0xF9F IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP

0xFA0 PIE2 OSCFIE CMIE - EEIE BCLIE HLVDIE TMR3IE CCP2IE

0xFA1 PIR2 OSCFIF CMIF - EEIF BCLIF HLVDIF TMR3IF CCP2IF

0xFA2 IPR2 OSCFIP CMIP - EEIP BCLIP HLVDIP TMR3IP CCP2IP

0xFAB RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

0xFAC TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D

0xFAD TXREG 8 bit register (0-255)

0xFAE RCREG 8 bit register (0-255)

0xFAF SPBRG 8 bit register (0-255)

0xFB0 SPBRGH 8 bit register (0-255)

0xFB1 T3CON T3RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3CCP1 TMR3CS TMR3ON

0xFB2 TMR3 16 bit register (0..65535)

0xFB4 CMCON C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0

0xFB5 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0

0xFB6 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0

0xFB7 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0

0xFB8 BAUDCON ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN

0xFBA CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0

0xFBB CCPR2 16 bit register (0..65535)

0xFBD CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0

0xFBE CCPR1 16 bit register (0..65535)

0xFC0 ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

0xFC1 ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

0xFC2 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GODONE ADON

0xFC3 ADRES 16 bit register (0..65535)

0xFC5 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN

0xFC6 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

0xFC7 SSPSTAT SMP CKE DA STOP START RW UA BF

0xFCA T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

0xFCB PR2 8 bit register (0-255)

0xFCC TMR2 8 bit register (0-255)

0xFCD T1CON T1RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON

NDSU MPLAB8 and C ECE 376

JSG - 15 - July 13, 2020

0xFCE TMR1 16 bit register (0..65535)

0xFD0 RCON IPEN SBOREN — RI TO PD POR BOR

0xFD5 T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

0xFD6 TMR0 16 bit register (0..65535)

0xFD8 STATUS — — — NEGATIVE OV ZERO DC CARRY

0xFF0 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

0xFF1 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP

0xFF2 INTCON GIE PEIE TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF

NDSU MPLAB8 and C ECE 376

JSG - 16 - July 13, 2020

