NDSU MPLABX and PICC18 ECE 376

MPLABX and PICC18

Note:

- Ifyou have adminstrative rights, I'd recommend using MPLAB 8.xx It's a lot more friendly and
doesn't hide your .hex file. If MPLAB 8 does't work (might not work on Windows 8), you're stuck
with MPLABX.

« For step-by-step instructions on how to compile and download a program using MPLAB and
PICC18, please refer page 2.

- Ifyou're not familiar with C or forgot most of what you learned in ECE 173, don't worry. We'll
start with fairly simple C programs and build from there.

- If you want to get an A or B in this course, please do the homework and test it on your PIC board.
Writing programs on paper (or copying someone else's code) isn't the same as trying to get it to
work in practice. Besides, this course is a lot more fun if you can see your devices actually
working.

Backqground

Back in the 1960's, compters were programmed in machine code. The operator would set switches
according to the binary code corrsponding to each line of code, push a button, and set the switches for the
next line of code.

Machine code is very cryptic. A program for a PIC which counts on PORTC looks like the following:

060000000A128A11F92F1B
OEOFF20083160313870183128701870AFE2FDF
00000001FF

Assembler is much superior to machine code. Semi-meaningful names represent the valid machine
operations, as described in the previous notes. The previous code would look like the following

_main

bsf STATUS, RPO
bef STATUS, RP1
clrf TRISC

bcf STATUS, RPO
clrf PORTC

_loop incf PORTC, F

goto _loop

This is a lot easier to understand than the machine code. It is still very cryptic, however. In addition,
assembler has a limited set of commands. The PIC we're using, for example, can

- Add, Subtract

- Load, Store

- Shift left, shift right, and
- Do boolean operations.

Using these limited instructions, you can do anything, such as implement a Fourier transform. The
algorithm will be very cryptic, however.

C is a high-level assembler which has some useful functions, such as
- multiply, divide,
JSG -1 - rev February 20, 2015

NDSU MPLABX and PICC18 ECE 376

 arrays
« for next, do while loops

« if statements

Procedure for Compiling a C Program in MPLABX

Step 1: Start with a working program. Typically, open a zip file and copy all of its contents to your
z-drive. I'd recomment something like

z\ECE376\Clock
Step 1. Create a new directory. I prefer using your Z: drive with a folder Z\ECE376\ASM\Count
Step 2. Start MPLABX
Step 3. Click on File New Project

MPLAB X IDE ¥2.20 - Count : default

File Edit ‘iew Mawvigate Source Refactor Run Debu

‘Bl Mew Project, . ChrH-Shift-+H |:

] Mew File... Chrl+I
=
Open Project. . Chrl+Shift+0
Doen Recent Proiect]

Select Microchip - Stand Alone Project. Click Next

New Project ll
Steps Choose Project
1. Choose Project Categaries: Projects:

2,

] Microchip Embedded m Standalone Project

: [:I Other Embedded m E:xisting MPLAE IDE +§& Project

D Samples m Prebuilt (Hezx, Loadable Image) Project
[G User Makefile Project

(& Library Project

Select PIC18 and PIC18F4620

New Projeckt

Steps Select Device

Choose Project
Select Device

Select Header Fannily I Advanced S-bit MCUs (PICLE) LI

Select Tool
[

Select Plugin Board . —
Select Compiler Device: I 21C
Select Project Marme and

ST g Rpt I

hardware Tool: Select ICD2 (doesn;t really matter for this one)

JSG -2 - rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

New Project

Steps Select Tool

1. Choose Project

2, Select Device) Hardware Tools
g, Mg oo il

-0 PICKEZ
- PICKES

Select Hi-Tech PICC18. If this doesn't show up, you need to install the C compiler (install MPLABX
first then run the C compiler installer)

New Project

Steps Select Compiler
1. Choose Project
2. Select Device) Compiler Toalchains
3. Select Header =Rat:)
;- ge:ect ;|°°'_ . -3 C18 (3.30) [CHMCC 18kin]
My e HI-TECH PICC18-PRO
6. Select Compiler 3 O g =
7. Select Project Name and e¥H1-TECH PIC ogram FilesiHI-TEC]

Falder

HI-TECH PICC1E-5TD

| Lo HI-TECH PICC18-STD {(v3,51PLZ) [C:\Program Files\HI-TECH Software{PICC-1815TDYS,51
-mpasm

‘ mpasm (v5.58) [C:\Program Files\Microchip\ MPLABR mpasm:x]

mpasm {v5,30,01% [CMCC18 mpasm]

...... ®C8 (Mone found)
Production Tested

Click on Brouse and select the directory for your code (usually on your z: drive).

Note: It doesn't work well if you use your desktop - that meny is too burried for the compiler

Here, I'm using my c: directory. You 'll probably use something like

z:/ECE376/Count

MNew Project

Steps

Select Project Name and Folder

b B SR

Finish.

Choose Projeck

Select Device

Select Header

Select Toal

Select Plugin Board

Select Compiler

Select Project Name and
Folder

Project Folder:

Project Mame:

Project Location: IC:'l,ECES?Eu_l8F4620'|,C0untnBC

ICount

|C\ECE76_taF 4620 CauntABC|Count

™| Owerwrite existing project,

At this point, your new project should be ready to go

JSG

-3 - rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

Now, select the C file you wish to compule. Right click on Source Code and add an existing file

MPLAEB X IDE ¥2.20 - Count : default

File Edit View Mavigate Source Refactor Run Debug Team
|79 1 & | @ oo
Projects 4l = | | File= |JCIasses |JS
EI@ Count
: % Header Files
ﬁ‘ Important Files
© B, N

ﬁ' Librarie:
B[Loadabl

Mew Logical Falder
Add Existing Item. ..

The file I included is CountABC.C. Your project should look something like this (with the project name

and file name possibly different)

MPLAB % IDE ¥2.20 - Count : default

File Edit Wiew MNavigate Source Refact
EREFLIEGE

Projects 40 x| | Files |
B Count

&[5 Header Files
#-[f§ Important Files
] CountABC.C

ﬁ' Libraries

ﬁ:‘ Loadables

Finally, you need to offset your code by 0x300 for the boot-loader to work. To do this, click on

Run - Set Project Configuration

MPLAB X IDE ¥2.20 - Count : default

File Edit Wiew Mavigate Source Refactor | Run Debug Team Tools Window Help

‘ EIF__I EI % - efault [> Run Main Project Fé& . q} - @
— [5 i
‘ Test Project Alb+Fe i ———
| Proj... 40 X|JFiIes |JCIasses -
=6 Count r;f Build Main Project = IE| &0k
% Header Files % Clean and Build Main Project abl—
; i es

ﬁ' Important Files Batch Build Main Project...

E}[aﬁ Source Files

figuration

Set Main Project

B-[IF Libraries

ﬁl‘ Loadables

& default

R File Shift+Fe
Test File Chrl+Fe
Select Linker -
JSG -4 - rev February 20, 2015

NDSU

MPLABX and PICC18 ECE 376
« Change the option category to Additional Options.
« Make the Code Offset 0x300 and
« Click Apply
I — |

Categories:

@ General

EI 2 Conf: [default]
: IC0 3
Loading

Libraries
Building
HI-TECH PICC15
b @ Compiler

= Linker

Options for piccld (

Option cateqgories:

¥3,63PL3)

Indditional options

[|

E:xtra Linker Option:

5

Codeoffset

0:300]

hecksum

Errata

_allgraph

Shuart Form

Trace bype

Extend address 0 in HEX file

r

You shoul d now be able to compile your code. To do this, click on the hammer (just below Tools). This
will build the project and create the hex file.

MPLAB X IDE ¥2.20 - Count : default

File Edt Wiew Mavigate Source Refackor

Run Debug Team Tools

Window Help

LI

=%

EI cgunt,{ EBuild Main Project

- AR SEE e

JProj.. 40 X|JFiIes |JCIasses |JServices |
El-[Gd Count |
Header Files =
ﬁ' Important Files .
- Source Files .
F] CountABC.C o
ﬁ' Libraries °
5 Loadables 12
13
14

15

/4 Global Varisbles

/¢ Subroutine Declarations

#include <picls,.h:

? /¢ Bootloader Routine

| Cutput - Count (Build, Load)

>

| pic18 h - Mavigator F X | | Count - Dashboard

L piclgh

make -f nbproject/Makefile-default. mk SUBPROJECTS=
make[1]:
make

-build-cont
'C: /ECE376_L8F4620/CountABC/Count X'
-f mbproject/Makefile-default mk dist/default/production/Count X produc

Entering directory

make[Z]: Entering directory 'C:/ECE3VE_LEF46Z0/CountiBC/Count . X'
"C:3Program Files‘\HI-TECH Software)\PICC-183PRONS._63%\binpiccl8.exe" --passl .
"CowProgram Files®HI-TECH Software’\PICC-18%PRONS . &63%\bintpiccl8. exe" -odist/sd

HI-TECH C PRO for the PICLS MCU Family (Lite)
Copyright (C) 1984-Z003 HI-TECH SOFTWARE
(1273) Omhiscient Code Generation not available in Lite mode (warning)

VI.E3PL3

: advisory: Employing 18F4620 errata work-arounds:
: advisory: * Corrupted fast interrupt shadow registers

: advisory: * Data in BAM location can be corrupted if async. reset ocours

Menory Summary:

Program space used 8Zh | 12300 of 10000k bytes (o 0.Z%)
Data space used Zh 2) of F30h bytes ¢ 0.1%)
EEPROM =space used Oh o)y of 400k bytes t o 0.0%)
Il Location space used Ok o) of Eh nibbles (0.0%)
Configuration bits used Ok o) of 7h words ¢ 0.0%)

Note on homework: If you copy the Output message when you compile, that's proof enough that your
code compiled. It also tells you how large your code was, its memory usage, etc.

JSG

- 5-

rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

For your convenience, MPLABX places the .HEX file 4 subdirectories below the main one (why?). It

will be under

Count.X / dist / default / production / Count.X.Production.HEX

File Edit View Favorites Tools Help

@ production

OBack - -J - lﬁ /_jSearch

[E Folders

Address I@ CHECEI76E_18F46200CountABCICount, 2idist)def aultiproduction

I25) nbproject
[E7 countapc
I25) Demo

IC5) Digital_Filker

il X | Hame = size | Type [Date Madfied [
1 [C5) ECEa76_16F4620] .B?Uunt-x-ljroduction 1KE HEX File 2/20{2015 3:23 PM
] e Count. s, praduction 18KE LST File 2/20{2015 3:23 PM
25 Boot_4620 Count. s, praduction 11KE MAF File 2/20{2015 3:23 PM
o Clock_ Count. ¥, production ZKE OBIFile 2/20/2015 323 PM
25 Calor_wheel Caunt. %, production LKE Appfix Package 2/20§2015 3:23 PM
o Color\j\n'heel Count. ¥, production 4KE SYMFile 2[20{2015 3:23 PM
(23 Copy of CountABC Count, %, production, cof 3KB (COF File 2[20{2015 3:23 PM
Bl 53 Countagc Count. %, production. bl 1 KB HHL File 2[20{2015 3:23 PM
B 5 Count.® Count. %, production. rlf Z0KE RLF File 2[20{2015 3:23 PM
123 buid
I25) debug
=5 dist
E 53 default
(=]

by 0x300.

note: If your code worked yesterday and doesn't work today, it's probably you forgot to offset your code

This also creates some files

Clock.Ist

This shows how your C code converts to assembler. A section looks like the following

4l C:\ECE376_18F4620% Clock" Clock.lst

Mg 153 O00FFAC G5I1FF mova (77 maint+2+0) s0ffh, w ZI
‘I 162 154 line 29
163 155 ;Clock.C: Z29: PORTA = 0O;
164 156 O0FFAE O0EOO movlw lowi(0)
165 157 O0FFEOD 6GES0 movwf [(c:3968)), ¢ ;volatile
166 158 line 30
167 159 ;Clock.C: 30: PORTE = 0O;
168 160 O0FFEZ O0EOO movlw lowi(0)
169 161 O0OFFE4 GEEL movwf [(2:3969)), c ;volatile
170 162 line 31
11?1 163 ;Clock.C: 31: PORTC = 0O;
7z 164 O0FFE& O0EOD movlw lowi(0)
173 165 O0O0FFES 6GESZ movwf ((c:3970)), ¢ ;volatile
174 166 line az '
175 1a7 ;Clock.C: 32: PORTD = 0O;
J17e 168 O0FFEA O0EOO movlw lowi(0)
177 1la9 O0FFEC &EE3 movwi (fe:3971)), o ;volatile '
f178 170 line 33
JSG -6 - rev February 20, 2015

NDSU MPLABX and PICC18

ECE 376

Clock.hex

This is the machine code you download to your processor

:04000000C7EFT7FFOD7
:10FFS8EOOO0OES26EO000E936E000ES46E000E956E25
:10FFO9EOOOOOES66EOOOLIFF6FOFOECI6EOOO0LIFEFS5135
:10FFAEOOOOOE806EOOOE816EOOOE826E000E836E4D
:10FFBEOOOOOE846E000EO0010001FD6FO00EOOQLAS
:10FFCEOOFE6F010EOO010001FD2500010001FD6F15
:10FFDEOOOOOEOOO10001FE210001FE6FFDCO83FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFEOOOQFO011

:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly
Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

If you don't remember C that much, don't worry: we don't use many of the features of C. I personally
treat C like assembler - only with a multiply command. Another theme you'll see is you can do just about
anything with an IF statement. The code may not be the most efficient - but as long as it's understandable

and works, it's usually good enough. If you really want efficiency, use assembler.

JSG

rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

C Language Summary

Character Definitions:

Name

char

unsigned char
int

unsigned int
long
unsigned long
float

double

long double

Arithmetic Operations

Name

>>
<<

Defining Variables:
int A;
int A=3;
int A, B, C;
int A=B=C=1;

int A[5]= {1,2,3,4,5};

Arrays:

int R[52];
int T[2][52];

bits

16
16
32
32
32
64
80

Example
1+2=3
3-2=1
2*%3=6
6/3=2
5%2=1
A++

++A

A--

--A
14&7=6
14|7=15
14727=9
14>>2=3
14<<2=756

A is an integer

range
-128 to +127

0 to 255

-32,768 to +32,767

0 to 65,535

-2,147,583,648 to +2,147,483,647
0 to 4,294,967,295

3.4e-38 to 3.4e38

1.7¢-308 to 1.7e+308

3.4¢-4932 to 3.4e+4932

Operation

addition
subtraction
multiplication
division

modulus

use then increment
increment then use
use then decrement
decrement then use
logical AND
logical OR

logical XOR

shift right. Shift in zeros from left.
shift left. Shift zeros in from right.

A in an integer initialized to 3.

A, B, and C are integers

A, B, and C are integers, each initialized to 1.
A is an array initialized to 1..5. Note: A[0]=1.

Save space for 52 integers

Save space for two arrays of 52 integers.

note: The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

General C Commands:

Conditional Expressions:

!

not. !PORTB means the compliment of PORTB.

assignment
test if equal.

JSG

rev February 20, 2015

NDSU MPLABX and PICC18

ECE 376

> greater than

< less than

>= greater than or equal
|

not equal

IF Statement

if (condition expression)
{ statement or group of statements

}
example: if PortB pin 0 is 1, then increment port C:
if (RBO==1) {
PORTC += 1;
}

IF - ELSE Statements

if (condition expression)
{ statement or group of statements

}

else {

alternate statement or group of statements

}

Example: if PortB bit 0 is 1, then increment port C, else decrement port C:

if (RBO==1)
PORTC += 1;
}

else
PORTC -= 1;
}

SWITCH (CASE)

switch (value)

{

case value: statement or group of statements
case value: statement or group of statements
defacult: statement or group of statements

}
WHILE LOOP

while (condition is true) {
statement or group of statements

}

JSG -9 -

rev February 20, 2015

NDSU MPLABX and PICC18 ECE 376

DO LOOP

do {
statement or group of statements
} while (condition is true);

FOR-NEXT

for (starting value; do while true; changes) {
statement or group of statements

}

Infinite Loop

while (1) {
statement or group of statements

}

note: Zero is false. Anything other than zeros is true. while(130) also works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to
- Declare how this subroutine is called (typically in a .h file)
« Declare what the subroutine is.

The format is

returned variable type = subroutine name(passed variable types).

Example: Write a subroutine which returns the square of a number:
// Subroutine Declarations

int Square (int Data);
// Subroutines

int Square (int Data) {
int Result;
Result = Data * Data;
return (Result) ;

}

JSG - 10 - rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

Execution Speed for Character Definitions:

Test: Compile the following program:
unsigned char A, B, C;

A = 4;

B = 8;

do {
C = A * B;
RCO = !RCO;

} while (1>0);

// used to determine # of instructions

Measure the time it takes for RCO to toggle and compute the number of cycles by dividing by 200ns.

Variable Type for Multiplication

Size of Code # of clock
(lines) cycles to
execute
unsigned char addition 21 6
unsigned char 37 45
unsigned int 56 70
unsigned long int 112 290
float 198 472
double
long double

JSG

- 11 -

rev February 20, 2015

NDSU MPLABX and PICC18 ECE 376

Details for C: (Optional)

Memory Mapping with Hi-Tech C:

With embedded systems, you care where your RAM variables are assigned. PORTA, for example, needs
to be located at RAM address 0xF80 since this address is tied to hardware. How you make this
assignment is non-starndard C and varies from compiler to compiler. For Hi-Tech C, this is done as
follows for PORTA to PORTC:

extern volatile near unsigned char PORTC @ 0xF82;
extern volatile near unsigned char PORTB @ OxF81;
extern volatile near unsigned char PORTA @ O0xF80;

Bits are assigned as well:

extern volatile near bit RAO
extern volatile near bit RAlL
extern volatile near bit RA2
extern volatile near bit RA3

((unsigned) &PORTA*8) +0
((unsigned) &PORTA*8) +1
((unsigned) &PORTA*8) +2;
((unsigned) &PORTA*8) +3

® ® ® @®

Such statements are part of the file PIC.H, which tell the compiler where PORTA, RA3, etc. are located.

Standard C Code:

Each line of C typically looks like the following:
result = function of previously defined variables

For example, the following is a valid mathematical expression but not valid C
X + 3 = 2*Y;

To make this a valid instruction in C. you need to rewrite it
X = 2*Y - 3;

Parenthesis are also useful (and never hurts). Over-use is not a bad thing if it makes is clearer what the
order of operations is.

X = (2*Y) - 3; // multiply by 2 first then subtract 3
X =2 * (Y - 3); // subtract 3 first then multiply by 2

Standard C Code Structure

JSG - 12 - rev February 20, 2015

NDSU

MPLABX and PICC18

ECE 376

So that others can modify your code more easily, a standard structure is to be used. This places all code
in the following order:

// Program Name

//

// Author

// Date

// Description

// Revision History
// Global Variables

// Subroutine Declarations
// where PORTB etc.

#include <pic.h>

// Subroutines

void interrupt IntServe (void) {}

// Main Routine

void main (void)

{

TRISA = 0;
TRISB = OxFF;
TRISC = 0;
TRISD = 0;
TRISE = 0;
ADCON1 = 15;
PORTA = 1;
PORTC = 3;
while (1) {
PORTD =

}i
}

// end of program

PORTB;

all
all
all
all
all

PORTA and PORTE are binary

pins
pins
pins
pins
pins

on
on
on
on
on

PORTA
PORTB
PORTC
PORTD
PORTE

// holder for interrupts

are
are
are
are
are

initialize PORTA to 1
initialize PORTC to 3

is defined

output

input

output

output

output

(vs analogqg)
= b00000001

= b00000011

(see week 8)

// copy whatever is input to PORTB to PORTD

JSG

- 13 -

rev February 20, 2015

NDSU

MPLABX and PICC18 ECE 376
Address Register Bit
Name 7 6 5 4 3 2 1 0
0xF80 PORTA - - RAS RA4 RA3 RA2 RA1l RAO
0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RBO
0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO
0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO
0xF84 PORTE - - - - RE3 RE2 RE1 REO
0xF85 LATA - - LATAS LATA4 LATA3 LATA2 LATAL LATAO
0xF86 LATB LATB7 LATB6 LATBS LATB4 LATB3 LATB2 LATB1 LATBO
0xF87 LATC LATC7 LATC6 LATCS LATC4 LATC3 LATC2 LATC1 LATCO
0xF88 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATDO
0xF89 LATE - - - - LATE3 LATE2 LATEL LATEO
0xF92 TRISA - - TRISAS TRISA4 TRISA3 TRISAZ2 TRISAL TRISAO
0xF93 TRISB TRISB7 TRISB6 TRISBS TRISB4 TRISB3 TRISB2 TRISB1 TRISBO
0xF94 TRISC TRISC7 TRISC6 TRISCS TRISC4 TRISC3 TRISC2 TRISC1 TRISCO
0xF95 TRISD TRISD7 TRISD6 TRISDS TRISD4 TRISD3 TRISD2 TRISD1 TRISDO
0xF96 TRISE - - - - TRISE3 TRISEZ2 TRISEL TRISEO
0xF9D PEIEL PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
OxFI9E PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF | TMR2IF | TMR1IF
OxFI9F IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP
0xFAQ PIE2 OSCFIE CMIE - EEIE BCLIE HLVDIE TMR3IE CCP2IE
OxFAl PIR2 OSCFIF CMIF - EEIF BCLIF HLVDIF TMR3IF CCP2IF
OxFA2 IPR2 OSCFIP CMIP - EEIP BCLIP HLVDIP | TMR3IP | CCP2IP
OxFAB RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
OxFAC TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
0xFAD TXREG 8 bit register (0-255)
OxFAE RCREG 8 bit register (0-255)
OxFAF SPBRG 8 bit register (0-255)
0xFBO SPBRGH 8 bit register (0-255)
O0xFB1 T3CON T3RD16 T3CCP2 T3CKPS1 T3CKPSO T3CCP1 T3CCP1 TMR3CS TMR30ON
0xFB2 TMR3 16 bit register (0..65535)
0xFB4 CMCON C20UT clouT C2INV C1lINV CIS CM2 CM1 [@%(0]
0xFBS5 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVRO
0xFB6 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPASO PSSAC1 PSSACO PSSBD1 PSSBDO
OxFB7 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDCO
0xFB8 BAUDCON ABDOVF RCIDL RXDTP TXCKP BRG16 - WUE ABDEN
OxFBA CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 Cccp2M1 CCP2MO
0xFBB CCPR2 16 bit register (0..65535)
OxFBD CCP1CON P1M1 P1MO DC1B1 DC1BO CCP1M3 CCP1M2 CCP1M1 CCP1MO
0xFBE CCPR1 16 bit register (0..65535)
0xFCO ADCONZ2 ADFM — ACQT2 ACQT1 ACQTO ADCS2 ADCS1 ADCSO
0OxFC1 ADCON1 — - VCFG1 VCFGO PCFG3 PCFG2 PCFG1 PCFGO
0xFC2 ADCONO - - CHS3 CHS2 CHS1 CHSO GODONE ADON
0xFC3 ADRES 16 bit register (0..65535)
0xFC5 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
0xFC6 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPMO
0xFC7 SSPSTAT SMP CKE DA STOP START RW UA BF
OxFCA T2CON — T20UTPS3 | T20UTPS2 | T20UTPS1 |T20UTPSO | TMR20N T2CKPS1 | T2CKPSO
0xFCB PR2 8 bit register (0-255)
0xFCC TMR2 8 bit register (0-255)
JSG - 14 - rev February 20, 2015

NDSU MPLABX and PICC18 ECE 376

0xFCD T1CON T1RD16 T1RUN T1CKPS1 T1CKPSO |T1OSCEN |[T1SYNC TMR1CS TMR1ON
0xXFCE TMR1 16 bit register (0..65535)

0xFDO RCON IPEN SBOREN - RI TO PD POR BOR
0xFD5 TOCON TMROON TO8BIT TOCS TOSE PSA TOPS2 TOPS1 TOPSO
0xFD6 TMRO 16 bit register (0..65535)

0xFD8 STATUS - - - NEGATIVE ov ZERO DC CARRY
OxFFO0 INTCON3 INT2IP INT1IP - INT2IE INT1IE - INT2IF INT1IF
OxFF1 INTCONZ2 RBPU INTEDGO INTEDG1 INTEDG2 — TMROIP — RBIP
OxFF2 INTCON GIE PEIE TMROIE INTOIE RBIE TMROIF INTOIF RBIF

This is what you get when you include the file PIC.H. This makes the following valid C code:

Byte Operations:

PORTB = PORTC; // copy PORTC to PORTB

TRISC = 0xO0F; // Make bits 0..3 of PORTC input, bits 4..7 output
Bit Operations:

RB2 = RC6; // Copy PortC bit 6 to PortB bit 2.

Note: Some registers are 8 bits. Some aer 16 bits.
- Ifyou read an 8-bit register into a 16-bit variable, the high 8 bits are all zero.
- Ifyouread a 16-bit register into an 8-bit variable, you lose the high 8 bits.

Make sure you read the 16-bit variables as 16-bit numbers. These are usually the counters and timers on
the PIC, which can take values from 0 to 65,535. You'll want to use all of these values.

JSG - 15 - rev February 20, 2015

