
AdaFruit NeoPixel LED's

www.AdaFruit.com NeoPixel LED

There are several innovative companies I like

www.SparkFun.com

A bunch of students from Colorado State who cruise the web to find neat components and build interface

boards to make them easier to use. Especially good spot for GPS and wireless communications

www.AdaFruit.com

Arduino, sensors, LEDs, such as the NeoPixel (1-wire wearable LED's for the fashion minded)

www.ThinkGeek.com

Useful devices like the Annoyatron (beeps at random times to annoy your neighbor)

AdaFruit NeoPixel

The NeoPixel is a GRB LED with a 1-wire interface. They are designed so that you can cascade them (as

a ring as shown above, for example) and drive all the LEDs with a single data line.

The first 24 bits of data drive the fist NeoPixel

The second 24 bits of data drive the second NeoPixel

The third 24 bits of data drive the third NeoPixel

etc.

To write to the NeoPixel, you send three bytes, most significant bit first.

Green (byte 1) Red (byte 2) Blue (byte 3)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Logic 1 and 0 is for each bit it determined by the length of a pulse:

Each bit is 1.2us long (+/- 150ns)

Logic 1 is on for 0.7us (+/- 150ns)

Logic 0 is on for 0.3us (+/- 150us)

NDSU AdaFruit - NeoPixel ECE 376

1 September 14, 2016

Logic 0 Logic 0Logic 1 End of Message

0.3us0.7us0.3us

1.2us1.2us 1.2us > 50us

If communication to more than one LED,

The first 3 bytes (GRB) is read by the first NeoPixel

The next 3 bytes are read by the second NeoPixel

etc.

The current to each LED is proportional to the number written, with 255 being 20mA.

The message is terminated by holding the data line low for more than 50us.

Assembler Coding - Bottom Up Programming

Note: This is one way to write programs.

Start with the simplest (lowest) level, like output a bit. Test this routine to make sure it works.

Once you can output 1 bit, output a byte (8 bits). Test this routine.

Next, output 3 bytes (green / red / blue). Test this routine.

Next, output 64 values for GRB to drive the display.

This is called 'bottom-up programming.' It is a methodical method to write programs and will get you a

working design. It also saves a LOT of time.

Level 1: Write a subroutine which outputs a 1 or 0, determined by bit 7 of PIXEL

; Global Variables

PIXEL EQU xxxx ; 0 is 0mA, 255 is 20mA

Pixel_1 ; clocks

bsf PORTD,0 ; 0 bit set

nop ; 1

btfss PIXEL,7 ; 2

bcf PORTD,0 ; 3 clear at 0.3us for a 0

nop ; 4

nop ; 5

rlncf PIXEL,F ; 6

bcf PORTD,0 ; 7 clear at 0.7us for a 1

return ; 8

; 9 (2 clocks for a goto)

call Pixel_1 ; 10 (part of the next routine)

; 11 (2 clocks for a goto)

NDSU AdaFruit - NeoPixel ECE 376

2 September 14, 2016

Note that you would normally end with three nop statements to make each bit 12 clocks long (1.2us).

Since this will be a subrine, 2 clocks are used for the return statement with another 2 clocks used for the

subsequent call statement.

Test: Test this code by sending a 01 signal every 100ms

Loop bcf PIXEL,7

call Pixel_1

bsf PIXEL,7

call Pixel_1

movlw 100

call Wait

goto Loop

The oscilloscope trace is as follows:

Testing Pixel_1: '0' is high for 300ns, '1' is high for 700ns, each bit is 1200ns

Level 2: Write a subroutine which outputs 8 bits. Pass the value to be written in the variable PIXEL

Pixel_8

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

return

Testing Pixel_8: To test this code, send the bit pattern 0000 1111:

Loop:

movlw 0x0F

movwf PIXEL

call Pixel_8

movlw 10

call Wait_ms

goto Loop

NDSU AdaFruit - NeoPixel ECE 376

3 September 14, 2016

The resulting signal on RD0 is:

Testing Pixel_8: 0x0F is Sent to the NeoPixel - displayed as four 300ns pulses and four 700ns pulses

Level 3: Write a subroutine which drives the GRB lights with intensity levels set by variables GREEN,

RED, and BLUE:

PixelGRB:

movff GREEN, PIXEL

call Pixel_8

movff RED, PIXEL

call Pixel_8

movff BLUE, PIXEL

call Pixel_8

return

and just for fun, a routine which turns off a pixel (outputs 00 00 00)

PixelOff:

clrf PIXEL

call Pixel_8

clrf PIXEL

call Pixel_8

clrf PIXEL

call Pixel_8

return

Testing: Make the first three lights Green, Red, Blue:

Loop:

movlw 250

movwf GREEN

clrf RED

clrf BLUE

call PixelRGB

NDSU AdaFruit - NeoPixel ECE 376

4 September 14, 2016

movlw 250

movwf RED

clrf BLUE

clrf GREEN

call PixelRGB

movlw 250

movwf BLUE

clrf GREEN

clrf RED

call PixelRGB

movlw 100

call Wait_ms

goto Loop

The output is as expected: the first three lights are green / red / blue

Testing PixelRGB: Green, Red, then Blue lights are displayed.

Fun with Neopixels: (Neopixel12): Display 12 different colors on a 12-neopixel ring.

Vary the red-green-blue numbers with 12 calls:

movlw 0

movwf RED

movlw 50

movwf GREEN

movlw 150

movwf BLUE

call PixelRGB

For example, the weights

Pixel 0 1 2 3 4 5 6 7 8 9 10 11

Red 200 150 100 50 0 0 0 0 0 50 100 150

Green 0 50 100 150 200 150 100 50 0 0 0 0

Blue 0 0 0 0 0 50 100 150 200 150 100 50

color red orange yellow green cyan blue purple pink

displays as the following:

NDSU AdaFruit - NeoPixel ECE 376

5 September 14, 2016

Neopixel12: Twelve colors are displayed on the Neopixel

More Fun with Neopixels: Display a time-changing color on pixel #1 going through the spectrum.

Loop1:

Start with GREEN = 250, RED = 0, BLUE = 0

Each loop, decrement GREEN and increment RED

When you decrement GREEN to zero, skip out

Loop 2: At this point, GREEN = 0, RED = 250

Each loop, decrement RED and increment BLUE

When you decrement RED to zero, skip out

Loop 3: At this point, RED = 0 and BLUE = 250

Each loop, decrement BLUE and increment GREEN

When you decrement BLUE to zero, skip out

0 250 500 750 Loop Count

The main routine is then

 movlw 0

 movwf RED

 movlw 0;

 movwf BLUE;

 movlw 250;

 movwf GREEN;

Loop1:

NDSU AdaFruit - NeoPixel ECE 376

6 September 14, 2016

call PixelRGB

movlw 10

call Wait_ms

incf RED,F

decfsz GREEN,F

goto Loop1

Loop2:

call PixelRGB

movlw 10

call Wait_ms

incf BLUE,F

decfsz RED,F

goto Loop2

Loop3:

call PixelRGB

movlw 10

call Wait_ms

incf GREEN,F

decfsz BLUE,F

goto Loop3

goto Loop1

NDSU AdaFruit - NeoPixel ECE 376

7 September 14, 2016

