
PIC Assembler
Background

Back in the 1960's, compters were programmed in machine code. The operator would set switches
according to the binary code corrsponding to each line of code, push a button, and set the switches for the
next line of code.

Machine code is very cryptic. A program for a PIC which counts on PORTC looks like the following:

060000000A128A11F92F1B
0E0FF20083160313870183128701870AFE2FDF
00000001FF

Assembler is much superior to machine code. Semi-meaningful names represent the valid machine
operations, as described in the previous notes. The previous code would look like the following

_main
 bsf STATUS, RP0
 bcf STATUS, RP1

clrf TRISC
bcf STATUS, RP0
clrf PORTC

_loop incf PORTC,F
goto _loop

This is a lot easier to understand than the machine code. It is still very cryptic, however. In addition,
assembler has a limited set of commands.

Instruction Sets

Only 75 instructions are used in the PIC18F4620 family. This allows the hardware to be optimized for
these 75 instructions, saving size, power, and increasing execution speed (at present, a PIC processor can
execute up to 5 million instructions per second while costing as little as $1.27 each)

Pretty much all a PIC can do is

Set and clear bits

Read and write from memory (8-bits at a time)

Logic and / or / exclisuve or (8-bits at a time)

Add, subtract

Multiply by two (shift left), and shift right

Multiply two 8-bit numbers

Anything else must be built up using these simple instructions.

NDSU Assembler and Boolean Math ECE 376

JSG - 1 - July 11, 2020

The formatting of an instruction is

Label operation REGISTER, F (W)

Label: optional name you can jump to with a 'goto' command (1st letter cap)

operation: assembler mnemonic for some operation (like clear) (lower case)

REGISTER: RAM address to be operated on

F: Save the result in the register

W: Save the result in the working register

Memory Read & Write

MOVWF PORTA memory write PORTA = W

MOVFF PORTA PORTB copy PORTB = PORTA

MOVF PORTA,W memory read W = PORTA

MOVLW 123 Move Literal to WREG W = 123

Memory Clear, Negation

CLRF PORTA clear memory PORTA = 0x00

COMF PORTA toggle bits PORTA = !PORTA

NEGF PORTA negate PORTA = -PORTA

Addition & Subtraction

INCF PORTA,F increment PORTA = PORTA + 1

ADDWF PORTA, F add PORTA = PORTA + W

ADDWFC PORTA, W add with carry W = PORTA + W + carry

ADDLW Add Literal and WREG

DECF PORTA,F decrement PORTA = PORTA - 1

SUBFWB PORTA,F subtract with borrow PORTA = W - PORTA - c

SUBWF PORTA,F subtract no borrow PORTA = PORTA - W

SUBWFB PORTA,F subtract with borrow PORTA = PORTA - W - c

SUBLW 223 Subtract WREG from # W = 223 - W

Shift left (*2), shift right (/2)

RLCF PORTA,F rotate left through carry (9-bit rotate)

RLNCF PORTA,F rotate left no carry

RRCF PORTA,F rotate right through carry

RRNCF PORTA,F rotate right no carry

Bit Operations

BCF PORTA, 3 Bit Clear f clear bit 3 of PORTA

BSF PORTA, 4 Bit Set f set bit 4 of PORTA

BTG PORTA, 2 Bit Toggle f toggle bit 2 of PORTA

Logical Operations

ANDWF PORTA, F logical and PORTA = PORTA and W

ANDLW 0x23 AND Literal with WREG W = W and 0x23

IORWF PORTA,F logical or PORTA = PORTA or W

IORLW 0x23 Inclusive OR Literal W = W or 0x23

NDSU Assembler and Boolean Math ECE 376

JSG - 2 - July 11, 2020

XORWF PORTA,F logical exclusive or PORTA = PORTA xor W

XORLW 0x23 Exclusive OR Literal W = W xor 0x23

Tests (skip the next instruction if...)

CPFSEQ PORTA Compare PORTA to W, skip if PORTA = W

CPFSGT PORTA Compare PORTA to W, Skip if PORTA > W

CPFSLT PORTA Compare PORTA to W, Skip if PORTA < W

DECFSZ PORTA,F decrement, skip if zero

DCFSNZ PORTA,F decrement, skip if not zero

INCFSZ PORTA,F increment, skip if zero

INFSNZ PORTA,F increment, skip if not zero

BTFSC PORTA, 5 Bit Test f, Skip if Clear

BTFSS PORTA, 1 Bit Test f, Skip if Set

Flow Control

GOTO Label Go to Address 1st word

CALL Label Call Subroutine 1st word

RETURN Return from Subroutine

RETLW 0x23 Return with 0x23 in WREG

RETFIE Return from Interrupt

Other Stuff....

NOP No Operation

MULLW Multiply Literal with WREG

MULWF PORTA multiply

TSTFSZ PORTA test, skip if zero

Sample Code:

Note: All actions usually pass through the W register.

Examples:

A = 5;

movlw 5 ; move 5 to W
movwf A ; move W to A

A += 5

movlw 5 ; move 5 to W
addwf A,W ; add to A, store the result in W
movwf A ; move W to A

movlw 5 ; move 5 to W
addwf A,F ; add to A, store the result in A

A = B

movff B,A

NDSU Assembler and Boolean Math ECE 376

JSG - 3 - July 11, 2020

if (A == B) X = 10;

movf A,W ; move A to W
cpfseq B ; compare A to B, skip if equal
goto End ; no skip, done
movlw 10 ; move 10 to W
movwf X ; move W to X

End: nop

if (A > B) X = 10; else X = 12;

movf B,W ; move B to W
cpfsgt A ; if A > B, skip
goto Else ; false, goto else

If:
movlw 10 ; true, move 10 to X
movwf X
goto End

Else:
movlw 12 ; move 12 to X
movwf X

End:
nop

for (i=1, i<10, i++);

movlw 1 ; i = 1
movwf i

Loop:
incf i,F ; i++
movlw 10
cpfslt i ; skip next command if (i < 10)
goto End ; false - exit
goto Loop ; true, keep looping

End:
nop

do { x = x + 1; } while (x <= 10);

Loop:
incf X,F ; x = x + 1;
movlw 10
cpfsgt X ; skip next command if (x > 10)
goto Loop

End:
nop

Note: There are several way to do the same thing. Some are more efficient than others. As a result

Different C compilers will give different versions of the compiled code

Decompilers exist (Convert assembler to C) - but you have to know what C compiler you used.

An expert assembler programmer will always give more efficient code than a C compiler. (Typical
3x to 10x smaller code). Some C compilers claim 80% efficiency - but that's fr specific test cases.

Assembler is difficult to write and almost impossible to read.

NDSU Assembler and Boolean Math ECE 376

JSG - 4 - July 11, 2020

Note: A very useful register is the STATUS register:

STATUS

Pin 7 6 5 4 3 2 1 0

Name - - - N OV Z DC C

N: Negative bit: This bit is used for signed arithmetic (2’s complement). It indicates whether the result
was negative (ALU MSB = 1).

1 = Result was negative

0 = Result was positive

bit 3 OV: Overflow bit: This bit is used for signed arithmetic (2’s complement). It indicates an overflow
of the 7-bit magnitude which causes the sign bit (bit 7) to change state.

1 = Overflow occurred for signed arithmetic (in this arithmetic operation)

0 = No overflow occurred

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit Carry/borrow bit. For ADDWF, ADDLW, SUBLW and SUBWF instructions:

1 = A carry-out from the 4th low-order bit of the result occurred

0 = No carry-out from the 4th low-order bit of the result

bit 0 C: Carry/borrow bit. For ADDWF, ADDLW, SUBLW and SUBWF instructions:

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurreRP1: RP0:

NDSU Assembler and Boolean Math ECE 376

JSG - 5 - July 11, 2020

Sample Programs

Display {1, 2, 3, 4} on {PORTA, PORTB, PORTC, PORTD}

#include <p18f4620.inc>

 org 0x800
 clrf TRISA
 clrf TRISB
 clrf TRISC
 clrf TRISD
 movlw 0x0F
 movwf ADCON1

 movlw 1
 movwf PORTA
 movlw 2
 movwf PORTB
 movlw 3
 movwf PORTC
 movlw 4
 movwf PORTD

Loop:
 goto Loop
 end

When you compile, this creates several files. The .lst file shows

The address of each instruction (LOC)

The machine code for that instuction (OBJECT)

The corresponding assembly command

LOC OBJECT CODE LINE SOURCE TEXT
000800 00003 org 0x800
000800 6A92 00004 clrf TRISA
000802 6A93 00005 clrf TRISB
000804 6A94 00006 clrf TRISC
000806 6A95 00007 clrf TRISD
000808 0E0F 00008 movlw 0x0F
00080A 6EC1 00009 movwf ADCON1
 00010
00080C 0E01 00011 movlw 1
00080E 6E80 00012 movwf PORTA
000810 0E02 00013 movlw 2
000812 6E81 00014 movwf PORTB
000814 0E03 00015 movlw 3
000816 6E82 00016 movwf PORTC
000818 0E04 00017 movlw 4
00081A 6E83 00018 movwf PORTD
 00019
00081C 00020 Loop:
00081C EF0E F004 00021 goto Loop
 00022 end

1234.lst file

NDSU Assembler and Boolean Math ECE 376

JSG - 6 - July 11, 2020

The .hex file contains the machine code: the thing you download to the PIC processor

:020000040000FA
:10080000926A936A946A956A0F0EC16E010E806EA9
:10081000020E816E030E826E040E836E0EEF04F0E4
:00000001FF

1234.hex: Machine code that the PIC processor wants

When you download the .hex file to the PIC processor, it executes the program (lecture #3 goes through
how to download code)

PIC Board running progrm that sends {1,2,3,4} to {PORTA, PORTB, PORTC, PORTD}

Note that the program worked!

PORTA = 1

PORTB = 2

PORTC = 3

PORTD = 4

Also note that only engineers get excited when a light turns on. This may not seem like much, but it's a
big deal. What this means is

Your program compiled

You were able to download your program to the PIC board

The PIC board is running your program

It took several hours of soldering, debugging, installing software, compiling, etc. just to get to this point.
A light turning on reall is a big deal.

NDSU Assembler and Boolean Math ECE 376

JSG - 7 - July 11, 2020

Example 2: Do some operations in assembler

A = 3

B = 5

PORTA = A + B

PORTB = A - B

PORTC = B - A

PORTD = A or B

Code:

#include <p18f4620.inc>

A equ 0
B equ 1

 org 0x800
 clrf TRISA
 clrf TRISB
 clrf TRISC
 clrf TRISD
 movlw 0x0F
 movwf ADCON1

 movlw 3
 movwf A
 movlw 5
 movwf B

 movf A,W
 addwf B,W
 movwf PORTA

 movf A,W
 subwf B,W
 movwf PORTB

 movf B,W
 subwf A,W
 movwf PORTC

 movf A,W
 iorwf B,W
 movwf PORTD

Loop:
 goto Loop
 end

The result when you download your code is:

NDSU Assembler and Boolean Math ECE 376

JSG - 8 - July 11, 2020

PIC Board running program for doing math in assembler

Note that

PORTA = 3 + 5

PORTB = 5 - 3

PORTC = 3 - 5 (twos compliment for -2)

PORTD = 3 or 5

NDSU Assembler and Boolean Math ECE 376

JSG - 9 - July 11, 2020

