Chi-Squared Test ECE 341: Random Processes Lecture #25

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Chi-Squared Test

Is the data consistent with an assumed distribution. It is used to test

- Whether a die is fair (each number has equal probability)
- Whether a distribution is Normal (vs. Poisson or geometric)

The Chi-Squared distribution is a type of Gamma distribution: $(x_i - \mu)^2$ Example: Is this a fair die?

d6 = ceil(rand*6);

To run a Chi-Squared test to see if this really is a fair die, do the following:

- Divide the results into M bins (6 bins in this case: numbers 0..5)
- Collect n data points.
- Count how many times the data fell into each of the M bins
- Compute the Chi-Squared total for each bin as

$$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$$

- np is the expected number of times data should fall into each bin
- N is the actual number of times data fell into each bin
- Use a Chi-Squared table to convert the resulting Chi-Squared score to a probability. Note that the degrees of freedom is equal to the number of bins minus one.

Example: n = 120 die rolls

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
1	1/6	20	18	0.2
2	1/6	20	27	2.45
3	1/6	20	25	1.25
4	1/6	20	19	0.05
5	1/6	20	14	1.8
6	1/6	20	17	0.45
			Total:	6.2

Use a Chi-squared table to convert this to a probability

• Degrees of freedom = # bins - 1

			TIODai	onity of rej	coung ine	- nun nype	1110313			
df	99.5%	99%	97.5%	95%	90%	10%	5%	2.5%	1%	0.5%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

Chi-Squared Table Probability of rejecting the null hypothesis

Chi-Squared table. With 5 degrees of freedom (df) and χ^2 = 6.2, the probability is between 90% and 10%

StatTrek.com:

• Also works (easier too)

 Enter a value for degrees of freedom. Enter a value for one, and only one, of the remaining unshaded text boxes. Click the Calculate button to compute values for the other text boxes. 							
Degrees of freedom	5						
Chi-square critical value (CV)	6.2						
P(X ² < 6.2)	0.71						
$P(X^2 > 6.2)$	0.29						

The probability the die is loaded is 0.71 (www.StatTrek.com) Repeat with 1,000,000 rolls of the dice:

This corresponds to a probability of 37%

- Not too large
- Not too small

Example 2: Loaded Die

Suppose instead you had a loaded die:

• 90% of the time, the die is fair (all results have equal probability)

30

• 10% of the time, the result is always a 6.

Can you detect that the die is fair after 120 rolls?

Code:

```
n=1000;
for i=1:n
    if(rand < 0.1)
        d6 = 6;
    else
        d6 = ceil(rand*6);
    end
    RESULT(d6) = RESULT(d6) + 1;
end
RESULT = 24 18 10 17 21
```

Compute the Chi-Squared score:

 $\chi^2 = 11.5$

Die Roll	р	np	Ν	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
(bin)	theoretical	expected	actual	
	probability	frequency	frequency	
1	1/6	20	24	0.8
2	1/6	20	18	0.2
3	1/6	20	10	5
4	1/6	20	17	0.45
5	1/6	20	21	0.05
6	1/6	20	30	5
			Total:	11.5

Convert this to a probabity with a Chi-Squared table

- $\chi^2 = 11.5$
- 5 degrees of freedom (6 bins)
- p = 0.96 (from StatTrek)

	Chi-Squared Table Probability of rejecting the null hypothesis									
			FIODA	onity of rej	ecting the	е пип пурс	Junesis			
df	99.5%	99%	97.5%	95%	90%	10%	5%	2.5%	1%	0.5%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

Chi-Squared table. With 5 degrees of freedom (df) and $\chi^2 = 11.5$, the probability is about 95%

Repeat for 1200 rolls:

```
RESULT = zeros(1, 6);
N = 1200;
p = 1/6;
for i=1:N
    if (rand < 0.1)
        d6 = 6;
    else
      d6 = ceil(rand*6);
    end
   RESULT(d6) = RESULT(d6) + 1;
end
RESULT = 186 180 160 173
                                 197
                                        304
Chi2 = sum((RESULT - N*p) .^{2}) / (N*p)
Chi2 =
       68.7500
```

With 1200 rolls, I'm > 99.95% certain this die is loaded

• and I'm probably broke after 1200 rolls of a loaded die

Example 3: How loaded is too loaded?

- Load a die
- p(detection) = 5% after 120 rolls.

Solution: χ^2 score = 11.1

- Assume x too many 6's rolled gives $\chi^2 = 11.2$
- Assume same number of rolls for all other numbers

- You can get away with 13.84 extra sixes
- p(loading) = 13.84 / 120 = 11.5%

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
1	1/6	20	20 - x/5	$\left(\frac{(x/5)^2}{20}\right)$
2	1/6	20	20 - x/5	$\left(\frac{(x/5)^2}{20}\right)$
3	1/6	20	20 - x/5	$\left(\frac{(x/5)^2}{20}\right)$
4	1/6	20	20 - x/5	$\left(\frac{(x/5)^2}{20}\right)$
5	1/6	20	20 - x/5	$\left(\frac{(x/5)^2}{20}\right)$
6	1/6	20	20 + x	$\left(\frac{x^2}{20}\right)$
			Total:	$\left(\frac{1.2x^2}{20}\right) = 11.5$

Example 4: Fudging Data

Chi-Squared tests can also detect if data was fudged.

- Large χ^2 means the data doesn't match the assumed distribution
- Small χ^2 means the data fits the assumed discription too well (data was forged)
 - It's possible but unlikely to get such good data

			Propa	contry of re	jecting the	e null nypol	nesis			
df	99.5%	99%	97.5%	95%	90%	10%	5%	2.5%	1%	0.5%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

Drobability of rejecting the null hypothesis

Chi-Squared Table

For example, suppose instead of rolling a fair die 1000 times I

- Only roll a die 100 times, and then
- Add 150 to the sum of each die roll so that it *looks* like I rolled the dice 1000 times.

You can spot this fake data by the data fitting the null hypothesis too well.

In Matlab:

RESULT

sum(((RESULT - 166.666).^2) / 166.666)

Determine the χ^2 score

- $\chi^2 = 0.44$
- p = 0.5% (from StatTrek)
- The odds against getting such good data are 200 : 1 against.
- Most likely the data was faked.

Die Roll	р	np	Ν	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
(bin)	theoretical	expected	actual	
	probability	frequency	frequency	
1	1/6	166.67	168	0.01
2	1/6	166.67	168	0.01
3	1/6	166.67	159	0.35
4	1/6	166.67	169	0.03
5	1/6	166.67	169	0.03
6	1/6	166.67	167	0
			Total:	0.44

Chi-Squared with Continuous Distributions

Also works with continuous distributions

- Split the continuous variable into N distinct regions (many ways to do this)
- Calculate the probability that any given data point will fall into each region (p)
- Calculate the expected number of observations you should have in each region (np),
- Compare to the actual frequency (N), i.e. calculate the χ^2 score, then
- Convert the chi-squared score into a probability.

Example:

```
X = sum(rand(12,1)) - 6 \approx N(0,1)
```

Is this a standard Normal distribution?

• No - I can see the code

Can you detect that it is not a standard normal variable?

- harder.
- Use a χ^2 table

Example: Generate 100 random numbers

```
X = [];
for i=1:100
   X = [X ; sum( rand(12,1) ) - 6];
   end
```

- Split the X axis into 8 regions (A..H) (this is somewhat arbitrary).
- Compute the probability of each region (p) and the expected frequency (np)
- Count how many times X fell into each region (N)
- From this, create a Chi-Squared table

Compute the χ^2 score

- $\chi^2 = 4.7906$
- p = 0.31 (from StatTrek)
- Can't tell with only 100 data points

Region (bin)	р	np	N	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
Α	0.001	0.1	0	0.1
В	0.022	2.2	2	0.0182
С	0.138	13.8	14	0.0029
D	0.341	34.1	30	0.493
E	0.341	34.1	42	1.8302
F	0.138	13.8	13	0.0464
G	0.022	2.2	0	2.2
Н	0.001	0.1	0	0.1
			Total:	4.7906

Repeat with 100,000 random numbers.

- $\chi^2 = 36.9886$
- p > 0.9995 (from StatTrek)
- With enough data I can tell that this isn't really a standard normal distribution
- The information is in the tails.

Region (bin)	р	np	N	$\chi^2 = \left(\frac{(np-N)^2}{np}\right)$
Α	0.0013	132	97	9.2803
В	0.0214	2,140	2,085	1.4136
С	0.1359	13,591	13,751	1.8836
D	0.3413	34,134	34,067	0.1315
E	0.3413	34,134	33,845	2.4469
F	0.1359	13,591	13,895	6.7998
G	0.0214	2,140	2,168	0.3664
Н	0.0013	132	88	14.6667
			Total:	36.9886