
Absorbing States and
z-Transforms

ECE 341: Random Processes
Lecture #21

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Absorbing States

Markov chains solve problems of the form

x(k + 1) = A x(k) x(k = 0) = X0

In the case of three people tossing a ball in our last lecture, the ball keeps moving
around and never ends up anywhere in particular. In some cases, there is a definite
end point.

Example: Best of 5 Games

 X(k + 1) =















1 0.7 0 0 0

0 0 0.7 0 0

0 0.3 0 0.7 0

0 0 0.3 0 0

0 0 0 0.3 1














X(k) X =















up 2 games (player A wins)

up 1 game

tied

down 1 game

down 2 games (player B wins)















Here, if you encounter state 1 or 5, the game ends.

This is denoted in the state-transition matrix with a 1.00 in a row

This is called an absorbing state.

If you have an absorbing state, as time goes to infinity you will always wind up there.
This system has two absorbing states (player A wins and player B wins). The value
of X determines the probability of getting to each of these states.

Find the steady-state solution

x(k + 1) = Ax(k) = x(k)

(A − I)x(k) = 0

This doesn't help in this case due to the absorbing states. If you try to solve, you get















0 0.7 0 0 0

0 −1 0.7 0 0

0 0.3 −1 0.7 0

0 0 0.3 −1 0

0 0 0 0.3 0





























a

b

c

d

e














= 0 X(∞) =















a

0

0

0

e















result: someone wins

Option 2: Eigenvectors.

The eigenvalues and eigenvectors tell you

How the system behaves (eigenvalues) and

What behaves that way.

[M,V] = eig(A)

 1.0000 0 -0.8033 0.2846 -0.5384

 0 0 0.4039 -0.6701 0.7692

 0 0 0.3739 0.6203 -0.0000

 0 0 0.1731 -0.2872 -0.3297

 0 1.0000 -0.1476 0.0523 0.0989

V: 1.0000 1.0000 0.6481 -0.6481 0

The eigenvectors tell you that eventually,

A wins (first eigenvector), or

B wins (second eivenvector).

Option 3: Play the game a large number of times (100 times).

In Matlab:

A = [1,0,0,0,0;0.7,0,0.3,0,0;0,0.7,0,0.3,0;0,0,0.7,0,0.3;0,0,0,0,1]'

 1.0000 0.7000 0 0 0

 0 0 0.7000 0 0

 0 0.3000 0 0.7000 0

 0 0 0.3000 0 0

 0 0 0 0.3000 1.0000

A^100

 1.0000 0.9534 0.8448 0.5914 0

 0 0 0.0000 0 0

 0 0.0000 0 0.0000 0

 0 0 0.0000 0 0

 0 0.0466 0.1552 0.4086 1.0000

A^100 tells you the probability of

A winning (first row) and

B winning (last row)

The columns tell you the probability if you offer odds:

Column 1: Player A starts with a +2 game advantage (player A always wins)

Column2: Player A starts with a +1 game advantage (A wins 95.34% of the time)

Column 3: Player A starts with a +0 game advantage (A wins 84.48% of the time)

Column 4: Player B starts with a +1 game advantage (A wins 59.14% of the time)

Column 5: Player B starts with a +2 game advantage (B always wins)

Odds +2 +1 +0 -1 -2

 1.0000 0.9534 0.8448 0.5914 0 A wins

 0 0 0.0000 0 0

 0 0.0000 0 0.0000 0

 0 0 0.0000 0 0

 0 0.0466 0.1552 0.4086 1.0000 B wins

Good Money After Bad

If you start losing, keep gambling to recoup your losses

This tends to result in you getting further behind

You're risking money you have (good money) to recoup money you lost (bad money)

For example, suppose you play a game of chance.

53% of the time you win and earn $1.

47% of the time you lose and lose $1.

Keep playing until you are up $10

Absorbing state

In theory, you always up $10

Monte-Carlo Simulation

Keep playing until you are up $10.

% game of chance

X = 0; % winnings

n = 0; % number of games

while (X < 10)

 n = n + 1;

 if (rand < 0.53)

 X = X + 1;

 else

 X = X - 1;

 end

 disp([n,X]);

end

Change the problem

p(winning) = 47% 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

Games

Winnings

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

Games

Winnings

Winnings after n games with a 47% chance of winning any given game.

Sometimes you end up at the absorbing state (+$10)

Sometimes you keep getting further and further behind

Good money after bad)

The creates a conflict:

If you only have one absorbing state, you should always wind up at that absorbing state.

With Monte Carlo simulations, this usually happens, but not always.

A better model would be to add a second absorbing state:

Once you are up $10, you quit and collect your winnings

Once you are down $100, the house no longer accepts your money.

Monte-Carlo Simulation: In 10,000 games

6,647 times you're up $10

3,353 times you're down $100

If you're losing, it's best to cut your losses and walk away.

It could be you're losing because you're just not that good

Your odds of winning are actually 47%, not 53%

z-Transforms

Suppose you want to determine the probability of player A winning after k games.
This is where z-transforms shine.

z-Transforms designed to determine the time response of a discrete-time system

X(k + 1) = AX(k) + BU(k)

Y = CX(k)

If U(k) is an impulse function, you get the impulse response:

zX = AX + B

Y = CX

This is what we want with Markov chains, only

B is the initial condition: X(0)

C tells you which state you want to look at.

For example, for the problem of winning by 2 games,

A =

 1.0000 0.7000 0 0 0

 0 0 0.7000 0 0

 0 0.3000 0 0.7000 0

 0 0 0.3000 0 0

 0 0 0 0.3000 1.0000

X0 = [0;0;1;0;0]

 0

 0

 1

 0

 0

C = [1,0,0,0,0] % A wins

C = 1 0 0 0 0

You can now find the Y(z) (or the impulse response)

Multiply by z (as per last lecture)

G = ss(A,X0,C,0,1);

tf(G)

 0.49 z

--

z^4 - z^3 - 0.42 z^2 + 0.42 z + 1.821e-018

sampling time (seconds): 1

zpk(G)

 0.49 z

z (z-1) (z-0.6481) (z+0.6481)

Sampling time (seconds): 1

This tells you that

Y(z) = 


0.49z

(z−1)(z−0.6481)(z+0.6481)




The time response is from the impulse function

y = impulse(G)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

1.2

Games

p(A Wins)

You can also find the explicit function for y(k) using z-transfoms.

Y(z) = 


0.49z

(z−1)(z−0.6481)(z+0.6481)




Pull ou a z and do partial fractions

Y = 




0.8449

z−1

 + 

−1.0742

z−0.6481

 + 

0.2294

z+0.6481



 z

Take the inverse z-transform

y(k) = 
0.8449 − 1.0742 (0.6481)k

+ 0.2294 (−0.6481)k 
 u(k)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

1.2

Games

p(A Wins)

