
Regression Analysis

ECE 341: Random Processes
Lecture #19

note:  All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com



Linear Estimation of Y given X:

Problem:   Given measurement Y, estimate X.

You want to know something that is difficult to measure.  You estimate this based upon something

that is easier to measure.

Fan speed  thrust for a jet engine (GE)≈

Pressure drop  thrust (Pratt & Whitney)≈

Since the estimate is different from the 'true' value, denote

The estimate of xx

The 'true' value of xx

The mean of xx

Basis matrix:  functions of xB

Form an estimate based upon Y using a linear curve fit:

y = ax + b



Least Squares

Procedure to find the parameters 'a' and 'b' given n data points:

Step 1)  Write this in matrix form:
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or

Y = BA

You can't invert matrix B since it's not square.  To make it square, multiply by B

transpose:

BTY = BTB ⋅ A



BTB is square and is usually invertable.  Solve for A:

A = 
B

TB

−1

BTY

This is the least squares solution for a and b.

Example:  Find the least squares curve fit for

the following data points (x,y)
x   y

 0.   -1.   

 1.    2.   
 2.    7.   

 3.    8.   

 4.    19.  



Solution:  Create matrix B that defines your

basis functions:
B = [x, x.^0]

    0.    1.  

    1.    1.  

    2.    1.  

    3.    1.  

    4.    1.  

Determine 'a' and 'b'
A = inv(B'*B)*B'*y

    4.6      times x

  - 2.2   times 1

plot(x, y, 'b.', x, y, 'r-');

So, the least squares estimate for y(x) is:

y ≈ 4.6x − 2.2

This minimizes the sum-squared error

J = Σ (yi − yi)
2



Weighted Least squares:

If you 'trust' some data points more than others, you can weight the data.  For

example, suppose you weight (trust) the 4th data point 10.6 times more than the rest.
x y q (weight)

 0.  - 1.   1

 1.    2.   1

 2.    7.   1

 3.    8.   10.6
 4.    19.  1

Create a diagonal matrix, Q, which has the weight for each element:

Q = diag([1,1,1,10.6,1])

 

    1.    0.    0.    0.      0.  

    0.    1.    0.    0.      0.  

    0.    0.    1.    0.      0.  

    0.    0.    0.    10.6    0.  

    0.    0.    0.    0.      1.  



Return to the equation for X and Y in matrix form:

Y = B A

Multiply by Q

QY = QB A

Multiply by X transpose

BT QY = BTQB A

Invert

(BTQB)-1 BT QY = A

The results is the least squares solution with weighting Q:

J = Σ qi(yi − yi)
2



Going back to our example:

-->Q = diag([1,1,1,10.6,1])

-->A = inv(B'*Q*B)*B'*Q*Y

 

    3.7092784  

  - 2.2        

so now the estimate for y should be:

 y = 3.70927x − 2.2

Checking by plotting this vs. your data:

-->y1 = 3.7092784*x1 - 2.2;

-->plot(x,y,'.',x1,y1,'-r')

 
-->xlabel('x')

-->ylabel('y')

 

Note that the line is closer to the 4th data

point (3,8) due to its weight of 10.6.



Covariance and Correlation Coefficient

The correlation between X and Y tells you how closely the two are related

Correlation of zero means they are independent

Correlation of +1.000 means that as X increases, Y increases.

Correlation of -1.000 means that as X increases, Y decreases.

Correlation doesn't care about cause and affect:  it just tells you whether the two

behave the same way.  

Useful in jet engines:  measure something highly correlated with thrust

Useful in Wall Street:  measure something that his highly correlated with stock prices 1 year in

the future.

To determine the correlation coefficient, you first need to determine the covariance

between X and Y.



Covariance:

The covariance between X and Y is defined as

Cov[X,Y] = E[(x − x)(y − y)]

Doing some algebra

Cov[X,Y] = E[(x − x)(y − y)]

= E[xy] − x ⋅ y

The correlation coefficient is defined as

ρX,Y =
Cov[X,Y]

σX
2
⋅σY

2

x and y are 100% correlated.  If you know x you know y with no error.ρ = ±1

x and y have no correlation.  Knowing x tells you nothing about y.ρ = 0



Some other useful relationships are

1st moment (m1)

m1 = mean(x)

2nd moment (m2)

m2 = mean(x2)

Variance

σ2 = m2 − m1
2

Covariance:

Cov(X, Y) = mean(xy) − mean(x) mean(y)

Correlation coefficient

ρX,Y =





Cov(X,Y)

σx
2
σy

2








Examples:  Let

x0 be a variable in the range if (0,10)

n be noise:  random variable with a uniform distribution over (0,10)

Let x be 0% to 100% noise

x = αx0 + (1 − α)η

Let y be related to x as

y = 2x + 3

Determine how the correlation coefficient varies with alpha.



No Noise

ρ2 = 1.000

x = [0:0.1:10]';

n = 10*rand(length(x),1);

 

x0 = 1.0*x + 0.0*n;

y = 2*x0 + 3;

plot(x, y, 'b.');

s2x = mean(x.^2) - mean(x)^2;
s2y = mean(y.^2) - mean(y)^2;

Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqrt(s2x*s2y)

Cov =   17.0000

p2 =    1.0000



90% data, 10% noise

ρ2 = 0.9943

x = [0:0.1:10]';

n = 10*rand(size(x0));

 

P = zeros(100,1);

 

x0 = 0.9*x + 0.1*n;

 

y = 2*x0 + 3;

s2x = mean(x.^2) - mean(x)^2;

s2y = mean(y.^2) - mean(y)^2;

Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqrt(s2x*s2y)

Cov =   15.5010

p2 =    0.9943



80% data / 20% noise

ρ2 = 0.9700

x = [0:0.1:10]';

n = 10*rand(size(x0));

 

x0 = 0.8*x + 0.2*n;

 

y = 2*x0 + 3;

s2x = mean(x.^2) - mean(x)^2;

s2y = mean(y.^2) - mean(y)^2;

Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqrt(s2x*s2y)

 

plot(x,y,'.')

Cov =   13.8326

p2 =    0.9700



50% data / 50% noise

ρ2 = 0.7074

x = [0:0.1:10]';

n = 10*rand(size(x0));

 

x0 = 0.5*x + 0.5*n;

 

y = 2*x0 + 3;

s2x = mean(x.^2) - mean(x)^2;

s2y = mean(y.^2) - mean(y)^2;

Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqrt(s2x*s2y)

 

plot(x,y,'.')

Cov =    8.3611

p2 =    0.7074 

 



0% Data, 100% Noise

ρ2 = 0.2429

x = [0:0.1:10]';

n = 10*rand(size(x0));

 

x0 = 0.0*x + 1.0*n;

 

y = 2*x0 + 3;

s2x = mean(x.^2) - mean(x)^2;

s2y = mean(y.^2) - mean(y)^2;

Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqrt(s2x*s2y)

 

plot(x,y,'.')

Cov =    4.0005

p2 =   0.2494



What's the relationship between the correlation coefficient and the contribution of the

signal to your measurement?
x = [0:0.1:10]';

n = 10*rand(size(x));

 

P = zeros(100,1);

 

for i=1:100

   a = i/100;

   x0 = a*x + (1-a)*n;

 

   y = 2*x0 + 3;
   s2x = mean(x.^2) -

mean(x)^2;

   s2y = mean(y.^2) - mean(y)^2;

   Cov = mean(x.*y) - mean(x)*mean(y)

   p2 = Cov / sqrt(s2x*s2y)

   P(i) = p2;

   end

  

Moral:  Don't be impressed with correlation coefficients less than 0.8
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