Regression Analysis

ECE 341: Random Processes
Lecture #19

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com




Linear Estimation of Y given X:

Problem: Given measurement Y, estimate X.

« You want to know something that is difficult to measure. You estimate this based upon something
that is easier to measure.

« Fan speed = thrust for a jet engine (GE)
- Pressure drop = thrust (Pratt & Whitney)

Since the estimate 1s different from the 'true' value, denote

X The estimate of x

X

The 'true' value of x

The mean of x

x|

B Basis matrix: functions of x

Form an estimate based upon Y using a linear curve fit:

A

y=ax+b




Least Squares
Procedure to find the parameters 'a’ and 'b' given n data points:

Step 1) Write this in matrix form:

V1 X1 1
V2 | | X2 1 a
y3 | | x31 | b

or
Y=BA

You can't invert matrix B since it's not square. To make it square, multiply by B
transpose:

B'Y=B'B-A




B'B is square and is usually invertable. Solve for A:

A= (BTB) Ty

This 1s the least squares solution for a and b.
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Example: Find the least squares curve fit for
the following data points (X,y)
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Solution: Create matrix B that defines your

basis functions:
B = [x, x.70]

0 1.
1. 1.
2. 1.
3. 1.
4. 1.

Determine 'a' and 'b’
A = inv (B'*B) *B'*y
4.6 times x
- 2.2 times 1

plot(x, vy, 'b.', x, y, 'r="');
So, the least squares estimate for y(X) is:

y~4.6x—2.2

This minimizes the sum-squared error

Jzz(lli—fli)2
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Weighted Least squares:

If you 'trust' some data points more than others, you can weight the data. For

example, suppose you weight (trust) the 4th data point 10.6 times more than the rest.
X N g (weight)

0. - 1. 1
1. 2. 1
2. 7. 1
3. 8. 10.6
4. 19. 1

Create a diagonal matrix, Q, which has the weight for each element:

Q = diag([1,1,1,10.6,11])
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Return to the equation for X and Y in matrix form:
Y=BA
Multiply by Q
QY=0QB A
Multiply by X transpose
B'QY=B'QB A
Invert
(B'QB)'B'QY=A

The results is the least squares solution with weighting Q:

J =2 qi(y; —SA/i)Z




Going back to our example:

-->Q = diag([1,1,1,10.6,11)
——>A = inv (B'*Q*B) *B'*Q*Y
3.7092784
- 2.2

so now the estimate for y should be:
v=3.70927x-2.2
Checking by plotting this vs. your data:

——>yl = 3.7092784*x1 - 2.2;
-——>plot(x,y,"'."',x1,yl,'-r")

——>xlabel ('x")
——>ylabel ('y")

Note that the line 1s closer to the 4th data
point (3,8) due to its weight of 10.6.
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Covariance and Correlation Coefficient

The correlation between X and Y tells you how closely the two are related
« Correlation of zero means they are independent
« Correlation of +1.000 means that as X increases, Y increases.

« Correlation of -1.000 means that as X increases, Y decreases.

Correlation doesn't care about cause and affect: it just tells you whether the two
behave the same way.

 Useful in jet engines: measure something highly correlated with thrust
« Useful in Wall Street: measure something that his highly correlated with stock prices 1 year in
the future.

To determine the correlation coefficient, you first need to determine the covariance
between X and Y.




Covariance:
The covariance between X and Y 1s defined as
CoviX, Y] =E[(x=X)(y - V)]
Doing some algebra
CovIX, Y] = E[(x—X)(v - V)]
=E[xy]-X-y

The correlation coefficient 1s defined as

__ CoviX,Y]

Px,y =
Gx-OY

- p=11 xandy are 100% correlated. If you know x you know y with no error.

- p= 0 x and y have no correlation. Knowing x tells you nothing about y.




Some other useful relationships are
Ist moment (m1)
mi = mean(x)
2nd moment (m2)
my = mean(x?)
Variance
62=my—m;
Covariance:
Cov(X,Y) = mean(xy) — mean(x) mean(y)

Correlation coefficient

Cov(X.,Y)
Pxy= ( j
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Examples: Let
+ X0 be a variable in the range if (0,10)

- n be noise: random variable with a uniform distribution over (0,10)

Let x be 0% to 100% noise
x=0xo+(1—am

Let y be related to x as
y=2x+3

Determine how the correlation coefficient varies with alpha.




No Noise

. p2=1.000

x = [0:0.1:10]1";
n = 10*rand(length(x),1);

x0 = 1.0*x + 0.0*n;
y = 2*x0 + 35
plot(x, vy, 'b.");

s2x = mean(x.”2) — mean (x)"2;
s2y = mean(y.”2) - mean (y)"2;
Cov = mean(x.*y) - mean(x)*mean(y)

p2 = Cov / sqgrt (s2x*s2y)
Cov = 17.0000

p2 = 1.0000
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90% data, 10% noise

. p2=0.9943

x = [0:0.1:101";
n = 10*rand(size (x0));

P = zeros (100,1);
X0 = 0.9*x + 0.1*n;

y = 2*x0 + 35

s2x = mean(x.”2) — mean(x)"2;
s2y = mean(y.”2) - mean (y)"2;
Cov = mean (x.*y) — mean(x) *mean(y)

p2 = Cov / sqrt (s2x*s2y)
Cov = 15.5010

p2 = 0.9943
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80% data / 20% noise
. p2=0.9700

x = [0:0.1:10]1";
n = 10*rand(size (x0));

x0 = 0.8*x + 0.2%*n;

y = 2*x0 + 3;

s2x = mean(x.”2) — mean(x)"2;

s2y = mean(y.”2) - mean (y)"2;

Cov = mean(x.*y) - mean(x)*mean(y)
p2 = Cov / sqgrt (s2x*s2y)
plot(x,vy,"'.")

Cov = 13.8326

p2 = 0.9700
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50% data / 50% noise

. p2=0.7074
x = [0:0.1:10]1";
n = 10*rand(size (x0));
x0 = 0.5*x + 0.5%n;
y = 2*x0 + 3;
s2x = mean(x.”2) — mean(x)"2;
s2y = mean(y.”2) - mean (y)"2;
Cov = mean(x.*y) - mean(x)*mean(y)
p2 = Cov / sqgrt (s2x*s2y)
plot(x,vy,"'.")
Cov = 8.3611

P2

= 0.7074
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0% Data, 100% Noise
. p2=0.2429
x = [0:0.1:10]1";
n = 10*rand(size (x0));

x0 = 0.0*x + 1.0%*n;

y = 2*x0 + 3;

s2x = mean(x.”2) — mean(x)"2;
s2y = mean(y.”2) - mean (y)"2;
Cov = mean (x.*y) — mean(x) *mean(y)

p2 = Cov / sqgrt (s2x*s2y)
plot(x,vy,"'.")
4.0005

Cov =

p2 = 0.2494
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What's the relationship between the correlation coefficient and the contribution of the

signal to your measurement?
Correlation Coefficient
x = [0:0.1:10]1"; 1
n = 10*rand(size (X)) ; I

0.8

P = zeros(100,1);

0.6

for 1i=1:100

0.4

a = 1/100; i
x0 = a*x + (1l-a)*n; 02
y - Z*XO + 3; 00102030405060708090‘100
S2X = mean (x.”2) - % Signal
mean (x) *2;
s2y = mean(y.”2) - mean(y)”"2;
Cov = mean (x.*y) — mean(x) *mean (y)
p2 = Cov / sqgrt(s2x*s2y)
P(1) = p2;
end

Moral: Don't be impressed with correlation coefficients less than 0.8




