Uniform Distribution

ECE 341: Random Processes Lecture #12

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Uniform Distribution

A uniform distribution is one where the probability density function (pdf) is

- constant over a range (a, b), and
- zero otherwise.

Example: Uniform distribution over the interval of (1, 2):

Examples:

- A 1k resistor with a tolerance of 5% will have a value in the range of +/- 5%. This can be modeled as a uniform distribution over the range of 950 < R < 1050
- A 3904 transistor has a nominal gain of 200 with a variation of +/- 100. This can be modeled as a unifiom distrubtion over the range if 100 < gain < 300

In general, if you know the limits but know nothing else about the distribution, a uniform distribution is a reasonable assumption to make about the random variable.

TYPE NO.	DESCRIPTION	LEAD CODE	V _{CBO}	VCEO	VEBO	ICBO [@] (nA)	V _{CB}	h _{FE}		@ V _{CE} @ I _C		V _{CE (SAT)} ^{@ I} C		Cob	fT	NF	toff
			(V) MIN	(V) *V _{CES} MIN	(V) MIN	^{*I} CES ^{*I} CEV MAX	(V)	MIN	*h _{FE} (1kHZ) MAX	(V)	(mA)	(V)	(mA)	(pF) *C _{rb} Max	(MHz) *TYP MIN	(dB) Max	мах
2N3860	NPN LOW NOISE	ECB	30	30	4.0	50	30	150	300	4.50	2.0	0.125	10	4.0	90		
2N3903	NPN AMPL/SWITCH	EBC	60	40	6.0	50*	30	50	150	1.0	10	0.30	50	4.0	250	6.0	225
2N3904	NPN AMPL/SWITCH	EBC	60	40	6.0	50*	30	100	300	1.0	10	0.30	50	4.0	300	5.0	250
2N3905	PNP AMPL/SWITCH	EBC	40	40	5.0	50*	30	50	150	1.0	10	0.40	50	4.5	200	5.0	260
2N3906	PNP AMPL/SWITCH	EBC	40	40	5.0	50*	30	100	300	1.0	10	0.40	50	4.5	250	4.0	300

Properties of Uniform Distributions:

Assume a uniform distribution over the interval (a, b)

Since the area must be 1.000, the height must be

Area = width * height = 1 $p(x) = \left(\frac{1}{b-a}\right)$ a < x < b **Mean:** The mean of the funciton (almost by inspection) is $\bar{x} = \left(\frac{a+b}{2}\right)$

Variance:

$$\sigma^{2} = \int_{a}^{b} p(x) (x - \mu)^{2} dx$$
$$\sigma^{2} = \left(\frac{(b-a)^{2}}{12}\right)$$

Moment Generating Function

$$\Psi(s) = \left(\frac{1}{(b-a)s}\right)(e^{-as} - e^{-bs})$$

Combinations of Uniform Distributions

If you add two uniform distributions, the result is

- The colvolution of their pdf's, or
- The product of their moment generating functions.

Example:

- Assume A and B are uniform distributions over the interval (0, 1).
- Find the pdf of the sum Y = A + B.

Solution using convolution:

$$A(x) = u(x) - u(x - 1)$$

$$B(x) = u(x) - u(x - 1)$$

$$Y(x) = A(x) * *B(x)$$

$$Y(x) = \int_{-\infty}^{\infty} A(t)B(x - t)dt$$

From the graph, this integral is

Y(x) =

- $\bullet \ 0 \qquad x < 0$
- x 0 < x < 1
- 1 x 1 < x < 2
- 0 2 < x

Solution using Calculus:

$$Y(x) = \int_{-\infty}^{\infty} A(t) B(x-t) dt$$

$$Y(x) = \int_{-\infty}^{\infty} (u(t) - u(t-1)) (u(x-t) - u(x-t-1)) dt$$

Multiply out giving four terms

$$= \int_{-\infty}^{\infty} u(t)u(x-t) dt + \int_{-\infty}^{\infty} -u(t)u(x-t-1) dt + \int_{-\infty}^{\infty} -u(t-1)u(x-t) dt + \int_{-\infty}^{\infty} u(t-1) u(x-t-1) dt$$

$$= \int_0^x 1 \, dt - \int_0^{x-1} 1 \, dt - \int_1^x 1 \, dt + \int_1^{x-1} 1 \, dt$$
$$= xu(x) - (x-1)u(x-1) - (x-1)u(x-1) + (x-2)u(x-2)$$
$$= xu(x) - 2(x-1)u(x-1) + (x-2)u(x-2)$$

Solve using moment generating functions

$$A(s) = \left(\frac{1}{s}\right)(1 - e^{-s}) \qquad B(s) = \left(\frac{1}{s}\right)(1 - e^{-s})$$
$$Y(s) = A(s)B(s) \qquad Y(s) = \left(\frac{1}{s^2}\right)(e^{-2s} - 2e^{-s} + 1)$$

Take the inverse LaPlace transform

$$y(x) = (x-2) u(x-2) - 2(x-1) u(x-1) + x u(x)$$

Solve in Matlab

• Approximate a uniform distribution with 100 points over the interval (0, 1)

```
dx = 0.01;
x = [0:dx:2]';;
A = 1*(x<1);
B = 1*(x<1);
Y = conv(A, B) * dx;
plot([1:length(Y)]*dx,Y)
```


Example 2: Find the pdf of summing three uniform distribitions

x = [0:dx:2]'; A = 1*(x<1); B = 1*(x<1); C = 1*(x<1); Y = conv(A, B) * dx; Y = conv(Y, C) * dx; plot([1:length(Y)]*dx,Y)

Example 3: Find the pdf for the sum of 32 uniform distributions:

x = [0:dx:2]'; A = 1*(x<1); Y2 = conv(A, A) * dx; Y4 = conv(Y2, Y2) * dx; Y8 = conv(Y4, Y4) * dx; Y16 = conv(Y8, Y8) * dx; Y32 = conv(Y16, Y16) * dx; plot([1:length(Y32)]*dx,Y32)

Uniform Distribution in Circuit Analysis:

Determine the pdf for Vce. Assume

- Resistors have a 1% tolerance
- The transistor has a gain in the range of 100 to 300

The equations for this circuit (from ECE 321)

$$V_{th} = \left(\frac{R_2}{R_2 + R_1}\right) 12V$$

$$R_{th} = \left(\frac{R_1 R_2}{R_1 + R_2}\right)$$

$$I_b = \left(\frac{V_{th} - .07}{R_{th} + (1 + \beta)R_e}\right)$$

$$I_c = \beta I_b$$

$$V_{ce} = 12 - R_c I_c - R_e (I_b + I_c)$$

Using a Monte-Carlo simulation

```
DATA = [];
for i=1:1000
R1 = 17600 * (1 + (rand() * 2 - 1) * 0.01);
R2 = 2256 * (1 + (rand() * 2 - 1) * 0.01);
Rc = 1000 * (1 + (rand() * 2 - 1) * 0.01);
Re = 100 * (1 + (rand() * 2 - 1) * 0.01);
Beta = 200 + 100*(rand()*2-1);
Vb = 12*(R2 / (R1+R2));
Rb = 1/(1/R1 + 1/R2);
 Ib = (Vb-0.7) / (Rb + (1+Beta) *Re);
Ic = Beta*Ib;
Vce = 12 - Rc*ic - Re*(ic+ib);
DATA = [DATA; Vce];
end
DATA = sort(DATA);
p = [1:length(DATA)]' / length(DATA);
```

```
plot(DATA, p)
xlabel('Voltage');
ylabel('p(V<x)')</pre>
```


Notes:

- The resulting plot is the cdf of the voltage
- Differentiate it and (in theory) you get the pdf

Due to addition, division, mutipliation, etc. it isn't clear what this distribution is.

• Later, we'll fit a Weibull distribution to this data

Summary

Uniform distrubutions are fairly common and easy to model

rand() function in Matlab

The sum of uniform distributions converges to a Normal distribution

• Central Limit Theorem (coming soon)

Convolution is required to sum uniform distributions

- conv() in Matlab
- Or you can use multipliation if using LaPlace transforms
 - a.k.a. moment generating functions in statistics