
Geometric Distribution

ECE 341: Random Processes
Lecture #8

note:  All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com



Geometric Distribution

The number of Bernoulli trials until you get a success

# die rolls until you get a 1

# times you do the dishes until someone notices

# of car trips you tke until something fails

# of days until you make a mistake at work your boss notices

etc
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pdf / mgf / mean / variance
Distribution description pdf mgf mean variance
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obtain m heads

pmq1−m q + p/z p p(1-p)

Binomial flip n coins
obtain m heads






n

m




 pmqn−m (q + p/z)

n np np(1-p)

Hyper Geometric Bernoulli trial without
replacement






A

x










B

n−x











A+B

n






Uniform
range = (a,b)

toss an n-sided die 1/n a ≤ m ≤ b
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Geometric Distribution:

A geometric distribution is one where you conduct a Bernoulli trial (think: flip
a coin) until you get a success.  

pdf:

f(k) = p qk−1 u(k − 1)

where 'p' is the probability of a success and k is the number of flips it takes
before you get a success.



Example:  Toss a coin.

p(success) = p

f(0) = 0

f(1) = p

f(2) = p q

f(3) = p q2

f(4) = p q3

etc.



Geometric with p = 0.9

f(k) = (0.9) (0.1)k−1 u(k − 1)

mean = 1.111

variance = 0.123
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Geometric with p = 0.5

f(k) = (0.5) (0.5)k−1 u(k − 1)

mean = 2.00

variance = 2.000
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Geometric with p = 0.2

f(k) = (0.2) (0.8)k−1 u(k − 1)

mean = 5.00

variance = 20.000
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Note that for a geometric distribution, the probability of a success for each
toss is the same.  Examples of this would be:

Tossing a coin until you get a heads

Betting on 10-black in Roulette until you finally win

Buying a lottery ticket each week until you finally win

Trying to open a door with n keys where you replace the key after each trial and try again
(and again and again..)   This is called sampling with replacement.



Mean and Variance (take 1)

Mean for a Geometric Distribution:

µ = Σ
k=1

∞

k ⋅ p ⋅ qx−1

µ = p(1 + q + 2q2 + 3q3 + 4q4 + ...)

Variance for a Geometric Distribution:
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(k − µ)
2

⋅ p ⋅ qk−1

You can kind of see that we need a better tool. 



Moment Generating Function

The time-series (where m means time) is

x(k) = q ⋅ x(k − 1)

x(1) = p

Taking the z-transform

x(k) = q ⋅ x(k − 1) + p δ(k − 1)

X = q z−1X + p z−1

Solve for X
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Moments

Zeroth Moment:  

mo must be 1.000 to be a valid pdf (all probabilities add to 1)
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The first moment is the mean
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Second Moment:

m2 = d2
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Variance:

σ2 = m2 − m1
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Matlab Example:  

Toss a die until you roll a 6  (p = 1/6).  

Determine the mean and standard deviation after 10,000 games

N = 1e5;
X = zeros(100,1);
p = 1/6;
q = 1-p;
 
for i=1:N
 
   n = 1;
 
   while(rand > p)
       n = n + 1;
   end
 
   X(n) = X(n) + 1;
end



 
X = X / N;
 
M = [1:100]';
x = sum(M .* X);
s2 = sum(X .* (M-x).*(M-x));
  
disp([x,1/p])
disp([s2,q/(p*p)])
 

       Sim        Calc
x      6.0179    6.0000
var   30.0712   30.0000



pdf and cdf:

The pdf is the probability of k tosses
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Experimental pdf for tossing a die until you roll a 6



The cdf is the integral (sum) of the pdf from 0 to x:  
cdf = 0*X;
for i=1:length(cdf)
   cdf(i) = sum(pdf(1:i));
   end

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

x

cdf(x)

Experimental cdf for a geometric distribution



The cdf is a more useful way of generating x

Pick a random number in the interval of (0, 1)

This is the y-coordinate

Find the corresponding x
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Finding the cdf using z-transforms

cdf is the integral of the pdf:

cdf = pdf ⋅ 
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Solving backwards

x = ceil
ln(1−cdf)

ln(q)



To find x:

Pick a random number in the range of (0, 1)

Convert to x using the above formula



Gauss' Dilemma:

This is a game which

No-one will play because you (almost) always lose, and

No-one will offer because the expected winnings are infinite.

Pay some amount, like $100 to play.  

Start with $1 in the pot.

Toss a coin.  If it comes up tails, double the pot.

Keep playing until the coin comes up heads.  

Once that happens, the game ends and you collect your winnings.



This is a geometric distribution with the probability density function being
# Tosses (m) 1 2 3 4 5 6

Probability (p) 1/2 1/4 1/8 1/16 1/32 1/64

Pot (x) 1 2 4 8 16 32

The expected winnings are the cost to play (-$100) plus the sum of the pots
times their probabilities:

E = Σ p(m) ⋅ x(m) − 100

E = 1

2
+ 1

2
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2
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2
+ ... − 100

E = ∞

With infinite expected winnings, this sounds like a good game to play.



Monte-Carlo Simulation

N = 10;
Winnings = 0;
p = 0.5;
 
for i=1:N
 
   Pot = 1;
   
   while(rand > p)
       Pot = Pot * 2;
   end
 
   Winnings = Winnings + Pot - 100;
end
 
Winnings / N

-98.2

Each time you play, you lose on average $98.2



Play the game 1000 times and you lose $95 each time you play (meaning
you're now down $95,000):

Winnings / N  =  -95.0180

Play 1 million times, and you're down $89 each time you play (meaning
you're down $89 million)

Winnings / N  =  -89.7185

Likewise, it's a really bad game to play.  With an expected winnings of
infinity, it's also a really bad game to offer.

Hence the name Gauss' Dilemma


