Central Limit Theorem

The Central Limit Theorem is probably one of the most important theorems in statistics. It basically says that all distributions coverage to a normal distribution.

This is one of the reasons engineers tend to assume everything is described by a normal distribution (even when a Poisson distribution is more accurate). It also allows you to determine the probability for some fairly complex problems fairly accurately.

Example: Uniform Distribution.

Let A be a uniform distribution over the range of (0, 1). If you plot this pdf along with a Normal distribution with the same mean and standard deviation, it is clear that the two are different.

pdf for the sum of two uniform distributions (blue) and a normal distribution with the same mean and variance (red)

pdf for the sum of four uniform distributions (blue) and a normal distribution with the same mean and variance (red)

The same holds for other distributions. If you have an exponential distribution with a mean of 1. The pdf vs. a normal distribution with the same mean and variance looks like the following:

pdf of an exponential distribution (blue) and a normal distribution with the same mean and variance

The pdf of the sum of 4 exponential distributions (blue) along with a normal distribution with the same mean and variance (red)

The pdf of the sum of 16 exponential distributions (blue) along with a normal distribution with the same mean and variance (red)

That in essence is the cental limit theorem: the sum of any distribution converges to a normal distribution.

Example 1: Central Limit Theorem with Dice

Let X be the sum of rolling 5 six-sided dice (5d6) and four 10-sided dice (4d10). What is the probability of rolling higher than 54.5?

Exact Solution: Convolve the pdf for 5d6 and 4d10

In Matlab:

```
d6 = [0, ones(1,6)];
d10 = [0, ones(1,10)];
d6x2 = conv(d6, d6);
d6x4 = conv(d6x2,d6x2);
d6x5 = conv(d6x4, d6);
d10x2 = conv(d10, d10);
d10x4 = conv(d10x2, d10x2);
pdf = conv(d6x5, d10x4);
pdf = pdf / sum(pdf);
size(pdf)
ans = 1 71
sum(pdf(46:71))
ans = 0.2382
```

The chance of rolling 45 or higher is 23.82%

sum(pdf(51:71))
ans = 0.0748

The chance of rolling 50 or higher is 7.48%

4

NDSU

Monte-Carlo Simulation

45 or higher:

ans = 0.2384

50 or higher

ans = 0.07472

Method 2: Central Limit Theorem.

The mean and standard deviation of a 6 and 10 sided die are

d6: mean = 3.5 d10: mean = 5.5var = 2.9167 var = 8.250

So, 5d6 + 4d10 is

mean = 5 * 3.5 + 4 * 5.5 mean = 39.50 var = 5 * 2.9167 + 4 * 8.250 var = 47.584

st dev = 6.8981

The z-score for 44.5 is (roll 45 or higher)

$$z = \left(\frac{44.5 - 39.5}{6.8981}\right) = 0.7250$$

From StatTrek, a z-score of 0.7250 corresponds to a tail with an area of 0.234 (vs. 0.2384 and 0.2382)

 Enter a value in three of the four text boxes. Leave the fourth text box blank. Click the Calculate button to compute a value for the blank text box. 		
Standard score (z) Cumulative probability: P(Z ≤	-0.7250	
-0.7250) Mean	0.234	
Standard deviation	1	

The z-score for 49.5 is (roll 50 or higher) is 1.450

$$z = \left(\frac{49.5 - 39.5}{6.8981}\right) = 1.450$$

The corresponds to a probability of 7.4% (vs. 7.472% and 7.48%)

 Enter a value in three of the four text boxes. Leave the fourth text box blank. Click the Calculate button to compute a value for the blank text box. 		
Standard score (z)	-1.450	
Cumulative probability: P(Z <u>≤</u> -1.450)	0.074	
Mean	0	
Standard deviation	1	

Example 2: Uniform Distribution.

Let A1 .. A10 be uniform distributions over the interval (0, 1).

Let X be the sum of A1 .. A10.

Determine the probability that the sum is more than 9.000

Solution: Convolution with matlab.

```
x = [0:dx:2]';
A = 1*(x < 1);
A2 = conv(A, A) * dx;
A4 = conv(A2, A2) * dx;
A8 = conv(A4, A4) * dx;
A10 = conv(A2, A8) * dx;
sum(A10) * dx
ans =
         1.0000
x = [0:2000] * dx;
plot(x,A10)
sum(A10(700:2000)) * dx
ans =
         0.0121
sum(A10(600:2000)) * dx
ans =
         0.1306
>>
```


Solution: Monte-Carlo Simulation

```
N6 = 0;
N7 = 0;
for i=1:1e5
  X = sum(rand(1, 10));
  if(X > 6)
     N6 = N6 + 1;
  end
  if(X > 7)
     N7 = N7 + 1;
  end
end
[N6, N7] / 1e5
                      monte-carlo
convolution
    0.1388
              0.0137
    0.1306
              0.0121
```

Solution: Normal Approximation

A uniform distribution over the interval of (0,1) has

mean = 0.5var = 1/12

The sum of 10 of these has

The z-score for 6.00 is

$$z = \left(\frac{6-5}{0.9129}\right) = 1.0954$$

This corresponds to a probability of 0.137

Enter a value in three of the four text boxes.Leave the fourth text box blank.		
 Click the Calculate button to con box. 	npute a value for the blank text	
Standard score (z)	-1.0954	
Cumulative probability: $P(Z \le -1.0954)$	0.137	
Mean	0	
Standard deviation	1	

The z-score for rolling 7.00 or higher is

$$z = \left(\frac{7-5}{0.9129}\right) = 2.1908$$

which corresponds to a probability of 0.014

 Enter a value in three of the four Leave the fourth text box blank. Click the Calculate button to conbox. 	text boxes. mpute a value for the blank text
Standard score (z) Cumulative probability: P(Z <	-2.1908
-2.1908) Mean	0.014
Standard deviation	1

Example 3: Uniform approximation for a Normal Distribution

One trick to creating a normal distribution is to sum twelve uniform distributions and subtracting 6. This gives

mean = 0.0 var = 12 / 12 = 1

The resulting distribution of 12 uniform distributions (found using convolution) vs. a standard normal curve are almost identical

pdf for a Standard Normal Curve (red) and summing 12 uniform distributions and subtracting six