Gamma and Poisson Distribution

The gamma and Poisson distributions are extensions of the exponential distribution. The exponential distribution, as a reminder, is the time until the next event where the probability of that time is

$$
p(t) = ae^{-at}
$$

A gamma distribution is the time until k events occur. Examples of this would be

- The time until k customers arrive,
- The time until k atoms decay,
- The time until you've been invited to k parties,
- The time until you've been exposed to Corona virus k times,
- etc. \bullet

A Poisson distribution is the probability of N events occurring over a time interval of M seconds. For example,

- The number of pieces of mail you receive each day (the sending time is exponential)
- The number of cars through in intersection in one minute \bullet .
- The number of atoms decaying over a one minute interval.
- The number of customers arriving at a restaurant in one hour \bullet

A Poisson distribution can also be used to approximate binomial distributions where n is large.

Gamma Distribution

The moment generating function is an extension of the exponential distribution (time until k events vs. 1 event). Likewise, the mean, variance, moment generating functions are all very similar

pdf for a Gamma distribution with an average arrival time of 1

These can all be derived from the moment generating function.

Example 1: Determine the pdf and cdf for a Gamma distribution with

- \cdot k = 3, and
- $a = 0.2$ \bullet

Solution: The moment generating function (i.e. LaPlace transform) is

$$
\psi(s) = \left(\frac{0.2}{s+0.2}\right)^3
$$

From a table of LaPlace transforms (CRC handbook of Mathematics, 1964 edition)

$$
\left(\frac{1}{s-a}\right)^3 \to \frac{1}{2!} t^2 e^{at} u(t)
$$

Substituting

$$
f_x = (0.2)^3 \frac{1}{2} t^2 e^{-0.2t} u(t)
$$

The cumulative density function (cdf) is the integral of the pdf

$$
F_X(s) = \left(\frac{0.2}{s+0.2}\right)^3 \left(\frac{1}{s}\right)
$$

Doing partial fraction expansion

$$
F_X(s) = \left(\frac{1}{s}\right) + \left(\frac{0.04}{(s+0.2)^3}\right) + \left(\frac{-0.2}{(s+0.2)^2}\right) + \left(\frac{-1}{s+0.2}\right)
$$

Taking the inverse LaPlace transform gives you the cdf

$$
F_x = (1 + (0.04 \ t^2 - 0.2 \ t - 1) \ e^{-0.2t}) \ u(t)
$$

Poisson Distribution.

The Poisson distribution is slightly different than the gamma distribution. Instead of the pdf being

 \bullet The time until the kth customer arrives, (Gamma)

it is

The probability that k customers will arrive in a fixed interval (Poisson) \bullet

Likewise, the Poisson distribution is actually a discrete probability function.

The Poisson distribution is useful if you want to know

- How many cars will go through an intersection in one hour,
- How many customers will arrive in one hour, \bullet .
- How many patients will go to the emergency room in one day, or
- The number of times your boss will notice you over the course of one week. \bullet
- The probability of a binomial distribution when n is large \bullet

The basic assumptions behind a Poisson distribution (Wikipedia) are:

- \cdot k is the number of times an event occurs in an interval and k can take values 0, 1, 2, ...
- \bullet . The occurrence of one event does not affect the probability that a second event will occur. That is, events occur independently.
- The average rate at which events occur is independent of any occurrences. For simplicity, this is usually assumed to be constant, but may in practice vary with time.
- Two events cannot occur at exactly the same instant; instead, at each very small subinterval exactly one event either occurs or does not occur.

The pdf for a Poisson distribution is (wikipedia)

Here, $\lambda = 1/a$ for equating exponential and Poisson processes.

The pdf for a Poisson distribution looks like the following ($\lambda = 10$ (a = 1/10) for illustration purposes).

pdf for a Poisson distribution with $\lambda = \{4, 8, 12\}.$ Note that this is a discrete pdf - so only the integer values of k matter

Poisson Approximation for a Binomial Distribution

A Poisson distribution is also a good approximation for a binomial distribution where the number of rolls is large. For this approximation, match the means:

$$
\lambda = np
$$

Example 1: Plot the probability density function for a binomial distribution with

n = 100
\np = 0.05
\nnp = 20
\nf₁(x) =
$$
\begin{pmatrix} 100 \\ x \end{pmatrix}
$$
 (0.05)^x(0.95)^{100-x}

Compare this to a Poisson approximation with

$$
\lambda = np
$$

f₂(x) = $\frac{1}{x!} \cdot 5^x \cdot e^{-5}$

Matlab Code:

First, generate the binomial pdf. Use a gamma function rather than factorials so that the resulting pdf is continuous (it's easier to compare graphs this way.)

```
x = [0:0.1:20];
f1 = gamma(100) ./ (gamma(x) \cdot * gamma(100-x)) \cdot * (0.05 \cdot \cdot x) \cdot * (0.95 \cdot(100-x) );
```
Next, generate the Poisson approximation:

 $f2 = (1 \cdot / \text{gamma}(x)) \cdot * (5 \cdot x) \cdot * \text{exp}(-5);$

Throw in a fudge factor so that the area is one. I'm not sure why it isn't, but I do know the area has to be one.

 $f1 = f1 / (sum(f1) * 0.01)$; $f2 = f2 / (sum(f2) * 0.01)$;

Plot the resulting pdf's:

plot $(x, f1, x, f2)$

Binomial (blue) vs. Poisson (red) with $np = 5$

A Poisson approximation is a slightly more complicated approximation for a binomial distribution than a Normal approximation. It's more accurate however.

- A normal distribution goes from - ∞ to + ∞
- A Poisson distribution is zero for $k < 0$ \bullet

In the case of a binomial distribution, you'll never get a negative total. Hence, the Poisson approximation is slightly more accurate than a Normal approximation.

Example 2: Plot the probability density function for a binomial distribution with

 $n = 10,000$ $p = 0.0005$ $np = 5$

This doesn't work really well using a Binomial pdf:

$$
f(x) = {10,000 \choose x} (0.0005)^{x} (0.9995)^{10,000-x}
$$

10,000! is a really big number.

Instead, use a Poisson distribution with $\lambda = np = 5$. This gives you the same results as we got before.

$$
f(x) \approx \frac{1}{x!} \cdot \lambda^x e^{-\lambda} \frac{1}{x!} \cdot 5^x \cdot e^{-5}
$$