
Geometric Distribution

Definitions:

Uniform Distribution: The probability of each valid outcome is the same.
Geometric Distribution: The number of Bernoulli trials until you get a success
Pascal Distribution: The number of Bernoulli trials until you get r successes
Geometric Distribution The number of times you roll a die until you get a one.

The number of trips you make a trip with a car until something fails.
The number of days until you an accident happens at work...

Distribution description pdf mgf mean variance

Bernoulli trial flip a coin
obtain m heads

pmq1−m q + p/z p p(1-p)
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Geometric Distribution:

A geometric distribution is one where you conduct a Bernoulli trial (think: flip a coin) until you get a success.
The pdf for a geometric distribution is:

f(k) =





p qk−1 k = 1, 2, 3

0 otherwise

where 'p' is the probability of a success and x is the number of flips it takes before you get a success.

To see this, consider the following with tossing a coin.  Assume the probability of a heads is 'p'.  The probability
of getting a heads on nth flip is the probability of getting n-1 tails followed by a heads:

x=1: f() = p
x = 2: f() = p q
x = 3: f() = p q2

etc.
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Note that the '1' in the notation means the game is over after the first success.  You might guess that there will be
more general distribution where you look for m successes.  You'd be right...

The pdf for a geometric distribution looks like the following:

p = 0.9

f = zeros(20,1);
 
p = 0.9;

for i=1:20
   f(i) = p * (1-p)^(i-1);
   end

Note that the probability that something happens is one: 

-->sum(f)
    1.  
 

Plotting the pdf shows what the distribution looks like:

-->bar(f)
-->xlabel('Number of Flips')
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Repeating for p = 0.5 and 0,2:
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pdf for a geometric distribution with p = 0.5
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Note that for a geometric distribution, the probability of a success for each toss is the same.  Examples of this
would be:

Tossing a coin until you get a heads
Betting on 10-black in Roulette until you finally win
Buying a lottery ticket each week until you finally win
Trying to open a door with n keys where you replace the key after each trial and try again (and again and
again..)   This is called sampling with replacement.

Mean for a Geometric Distribution:

µ = Σ
k=1

∞

k ⋅ p ⋅ qx−1

µ = p(1 + q + 2q2 + 3q3 + 4q4 + ...)

Variance for a Geometric Distribution:

σ2 = Σ
k=1

∞

(k − µ)
2

⋅ p ⋅ qk−1

You can kind of see that we need a better tool.  That will be moment generating functions (coming in a lecture
shortly.).  The net result is going to be....

µ = 1
p

σ2 =
q

p2
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Moment Generating Function for an Exponential Distribution:

The time-series (where m means time) is

x(k) = q ⋅ x(k − 1)

x(1) = p

Taking the z-transform

x(k) = q ⋅ x(k − 1) + p δ(k − 1)

X = q z−1X + p z−1

Solve for X

(z − q)X = p

ψ = 


p

z−q



Using this, you can find moments as well as the mean and variance1

Zeroth Moment:  

mo must be 1.000 to be a valid pdf (all probabilities add to 1)

m0 = ψ(z = 1) = 
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1st-Moment (mean)

The first moment is the mean

m1 = − d
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= −ψ (z = 1)
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Second Moment:

m2 = d2

dz2 (ψ(z))z=1
= ψ (z = 1)

m2 = d

dz
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1 Probability and Statistics, Morris DeGroot
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Variance:

σ2 = m2 − m1
2

σ2 = 


2

p2


 − 

1
p



2

= 


1

p2




actual variance:  not sure why I'm off by qσ2 = 


q

p1




That was a lot easier than applying the definition.  z-transforms are really useful

Matlab Example:  Toss a die until you roll a 6  (p = 1/6).  Determine the mean and standard deviation after
10,000 games

N = 1e5;
X = zeros(100,1);
p = 1/6;
q = 1-p;
 
for i=1:N
 
   n = 1;
 
   while(rand > p)
       n = n + 1;
   end
 
   X(n) = X(n) + 1;
end
 
X = X / N;
 
M = [1:100]';
x = sum(M .* X);
s2 = sum(X .* (M-x).*(M-x));
  
disp([x,1/p])
disp([s2,q/(p*p)])
 

       Sim        Calc
x      6.0179    6.0000
var   30.0712   30.0000
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The cdf is the integral (sum) of the pdf from 0 to x:  

cdf = 0*X;
for i=1:length(cdf)
   cdf(i) = sum(pdf(1:i));
   end
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Experimental cdf for a geometric distribution

The cdf is a more useful way of generating x

Pick a random number in the interval of (0, 1)
This is the y-coordinate

Find the corresponding x
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You can also compute the cdf using z-transforms (with a lot less work).  The cdf is the integral of the pdf:

cdf = pdf ⋅ 
z

z−1



or

cdf = 


p

z−q





z

z−1



= 


p

(z−q)(z−1)

 z = 


1

z−1
+ −1

z−q

 z

cdf = 1 − qx

Solving backwards

x = ceil
ln(1−cdf)

ln(q)



To find x:

Pick a random number in the range of (0, 1)
Convert to x using the above formula
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Gauss' Dilemma:

This is a game which

No-one will play because you (almost) always lose, and
No-one will offer because the expected winnings are infinite.

Pay some amount, like $100 to play.  Start with $1 in the pot.

Toss a coin.  If it comes up tails, double the pot.

Keep playing until the coin comes up heads.  Once that happens, the game ends and you collect your winnings.

This is a geometric distribution with the probability density function being

# Tosses (m) 1 2 3 4 5 6

Probability (p) 1/2 1/4 1/8 1/16 1/32 1/64

Pot (x) 1 2 4 8 16 32

The expected winnings are the cost to play (-$100) plus the sum of the pots times their probabilities:

E = Σ p(m) ⋅ x(m) − 100

E = 1

2
+ 1

2
+ 1

2
+ 1

2
+ ... − 100

E = ∞

With infinite expected winnings, this sounds like a good game to play.  If you play it, you almost always lose. 

For example, play 10 games in Matlab:

% Gauss' Dilemma
 
N = 10;
Winnings = 0;
p = 0.5;
 
for i=1:N
 
   Pot = 1;
   
   while(rand > p)
       Pot = Pot * 2;
   end
 
   Winnings = Winnings + Pot - 100;
end
 
Winnings / N

-98.2

Each time you play, you lose on average $98.2
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Play the game 1000 times and you lose $95 each time you play (meaning you're now down $95,000):

Winnings / N  =  -95.0180

Play 1 million times, and you're down $89 each time you play (meaning you're down $89 million)

Winnings / N  =  -89.7185

Likewise, it's a really bad game to play.  With an expected winnings of infinity, it's also a really bad game to
offer.

Hence the name Gauss' Dilemma
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