
ECE 341 - Homework #7

Uniform and Exponential Distributions.  Due Monday, June 1st

Please make the subject "ECE 341 HW#7" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Uniform Distributions

Let 

a be a sample from A, a uniform distribution over the range of (0, 1)

b be a sample from B, a uniform distribution over the range of (0,6)

c be a sample from C, a uniform distribution over the range of (0,10)

1) Determine the pdf for a + b using moment generating funcitons (i.e. LaPlace transforms)
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Take the inverse LaPlace trasform
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2) Determine the pdf for a + b using convolution (by hand or Matlab)

t = [0:0.01:10]';
A = 1 * (t<=1);
B = 1/6 * (t <= 6);
dt = 0.01;
Y = conv(A,B)*dt;
ty = [0:length(Y)-1]' * dt;
plot(ty,Y)
xlim([0,10])

which is the same as we got in problem #1



3) Assume each resistor has a tolerance of 5% (i.e. a uniform distribution over the range of (0.95, 1.05) of the

nominal value.  Determine the mean and standard deviation for the voltage at Y for the following circuit.
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Write the node equations
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Pick random values for R and solve for V5



Use the nominal values and check agains CircuitLab

% Homework #7 problem #3
 
R1 = 1000 * (1 + 0.0*(2*rand-1));
R2 =  600 * (1 + 0.0*(2*rand-1));
R3 = 1000 * (1 + 0.0*(2*rand-1));
R4 = 3000 * (1 + 0.0*(2*rand-1));
R5 = 1000 * (1 + 0.0*(2*rand-1));
R6 =  500 * (1 + 0.0*(2*rand-1));
R7 = 1000 * (1 + 0.0*(2*rand-1));
R8 = 3000 * (1 + 0.0*(2*rand-1));
 
a1 = [0,0,1,-1,0];
a2 = [1/R1+1/R2+1/R3,0,-1/R3,0,0];
a3 = [0,1/R5+1/R6+1/R7,0,-1/R7,0];
a4 = [-1/R3,0,1/R3+1/R4,0,0];
a5 = [0,-1/R7,0,1/R7+1/R8,-1/R8];
A = [a1;a2;a3;a4;a5];
B = [0;10/R1;10/R5;0;0];
V = inv(A)*B

    3.4286
    3.1429
    2.5714
    2.5714
    0.8571

This matches CircuitLab, so it looks like the equations are correct.  Change the percentages to 5% and run 1000

times



p = [1:1000]' / 1000;
plot(V5,p)
xlabel('V5');

cdf for V5

This gives the cdf.  To determine the pdf, you could use a Weibull distribution (see homework #9)

The mean and standard deviation are

mean(V5)

ans =    0.8637

std(V5)

ans =    0.3188



Exponential Distributions

Let

d be a sample from D, an exponential distribution with a mean of 5

e be a sample from E, an exponential distribution with a mean of 10

f be a sample from F, an exponential distribution with a mean of 15

4)  Use moment generating functions to determine the pdf for d + d + d (i.e. the time for three events to be

observed in D)
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5)  Use moment generating functions to determine the pdf for the sum: d + e + f (i.e. the time for one event from

D, E, and F)
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Take the inverse LaPlace transform

y(t) = (0.1 e−0.2t − 0.4 e−0.1t + 0.3 e−0.0667t)u(t)


