
ECE 341 - Homework #3

Dice Games and z-Transform.  Due Friday, May 22nd

Please make the subject "ECE 341 HW#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on
blackboard)

Farkle

1)  Compute the odds or rolling a 3 of a kind, 3 of a kind (two triplets) in Farkle

dice = xxx yyy

The number of ways you can roll 6 dice is

N = 66 = 46, 656

The number of ways you can get two triplets is

M = (6 numbers choose 2) (6 spots for x, choose 3)(3 remaining spots for y, choose 3)
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The odds of getting two triplets is
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With a value of 2500 points, this adds to the expected value or rolling all six dice

2500 p = 16.075

Running a Monte-Carlo simulation in Matlab results in 647 / 100,000 cases of two triplets

p = 0.006470 (experimental)



2)  Compute the odds of rolling 3 of a kind in Farkle.

dice = xxx abc

M = (6 numbers choose 1 for x)(6 spots for x, choose 3)(5 other numbers pick 1 for a)

(5 other numbers for b pick 1)(5 other numbers for c pick 1)

minus the case where a=b=c (300 ways from problem #1)
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M = 15, 000 − 300 = 14, 700

The probabity of getting three of a kind is thus

p = 
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Using a Monte-Carlo simulation of rolling 6 dice, the chance of getting 3 of a kind is

p = 30,780 / 100,000 = 0.30780

Reasonably close to what we calculated.



z-Transforms

Assume X and Y have the following z-transforms

bernoulli trial (coin toss)X = 
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3)  Determine the z-transform and inverse z-transform for XX

XX is
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You can also write this as
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pdf:  Apply the definition of z-transform
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4)  Determine the z-transform and inverse z-transform for XY

bernoulli trial (coin toss)X = 
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z-transform of XY (also known as the moment generating function)
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To take the inverse z-transform, simply apply the definition of z-transform

moment generating funciton:
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5)  Determine the z-transform and inverse z-transform of XY

geometric distributionX = 0.2
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Solution: (moment generating function):
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Inverse z-transform (pdf)
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