Common Emitter Amplifier ECE 321: Electronics II

Lecture #14
Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

DC Analysis (review):

To use a transistor as a Class-A amplifier

- Use Re to stabilize the Q-point
- Use R1 and R2 to set the Q-point

Assume the Q-point is

$$Ic = 6mA$$

$$Vc = 6V$$

Capacitors isolate the circuit at DC

Common Emitter Amplifier

Connect

- Ce to ground.
- Cb to the input
- Cc ot the output

What is the 2-port model for the resulting AC circuit?

• a.k.a. the *Small Signal Model*

Problem: How to model the diode

Recall that for a silicon diode that

$$V_d = \eta V_T \cdot \ln \left(I_d / I_o + 1 \right)$$

Taylor's Series (2-terms):

$$V_d \approx V_{th} + i_d r_f$$

Taking the derivative:

$$r_f = \frac{dV_d}{dI_d} = \frac{d}{dI_d} \left(\eta V_T \cdot \ln \left(\frac{I_d}{I_o} + 1 \right) \right)$$

$$r_f \approx \left(\frac{\eta V_T}{I_d} \right)$$

$$r_f = \left(\frac{0.026V}{30\mu A} \right) = 867\Omega$$

Small-Signal Model (AC Model)

Replace the transistor with it's AC model

- Ignore the DC terms (already computed)
- Diode becomes rf (867 Ohms)

Note:

- Vcc = 12V (DC) + 0V (AC)
- This is AC analysis

Using superposition

• V(total) = DC + AC

Redraw the Circuit

Convert to a 2-Port Model

Rin: For the 2-port model, short Vo so that Vo=0 and $A_iV_{out} = 0$. Measure the resistance at the input. Doing the same for the CE amplifier, this results in

$$R_{in} = R_1 ||R_2||r_f$$

Ai: For the 2-port model, apply 1V to Vout. Measure the resulting voltage at Vin. Doing the same for the CE amplifier results in Vin = 0V, so

Rout: For the 2-port model, short Vi so that Vi=0 and $A_oV_{in}=0$. Measure the resistance at the output. Doing the same for the CE amplifier, this results in

$$R_{out} = R_c$$

Ao: For the 2-port model, apply 1V to Vin. Measure the resulting voltage at Vout. Doing the same for the CE amplifier results in

$$A_o = V_{out} = -R_c I_c = -\frac{\beta R_c}{r_f}$$

2-Port Model:

$$R_{in} = 605\Omega$$

$$R_{out} = 1k\Omega$$

$$A_o = -231$$

Simulation Results

- Vin = 1mV 1kHz sine wave
- Vc has a DC offset
- Plus an AC component (1kHz)

Simulation Results (DC)

- Vb = 1.287V
- Vc = 6.217V
- Ve = 0.582V
- Ic = 5.783 mA
- Ib = 38.39uA

$$\beta = \frac{I_c}{I_b} = 151$$

$$r_f = \frac{0.026}{38.39 \mu A} = 677 \Omega$$

CircuitLab: Ao:

- Apply 1mV to Vin
- Set R8 = 0
- Set R5 = 10M (large)
- Measure the Vout
- (time-domain simulation)

Vout = 203.3 mV (peak)

- Ao = -203.3
- Calculated = -230

CircuitLab: Rin:

- Apply 1mV to Vin
- Set R8 = 605
- Set R5 = 10M (large)
- Measure the Vout
- (time-domain simulation)

$$Vout = 95.04 \text{mV (peak)}$$

$$95.04mV = \left(\frac{R_{in}}{R_{in} + 605}\right) 203.3mV$$

$$R_{in} = \left(\frac{95.04mV}{203.3mV - 95.04mV}\right) 605\Omega$$

$$R_{in} = 769\Omega$$

• (vs. 605 Ohms calculated)

CircuitLab: Rout:

- Apply 1mV to Vin
- Set R8 = 0
- Set R5 = 1k
- Measure the Vout
- (time-domain simulation)

Vout = 107.1mV (peak)

$$107.1mV = \left(\frac{1000}{R_{out} + 1000}\right) 203.3mV$$

$$R_{out} = \left(\frac{203.3mV - 107.1mV}{107.1mV}\right) 1000\Omega$$

$$R_{out} = 898\Omega$$

• vs. 1000 Ohms calculated

Cascading CE Amplifiers

Analysis:

• Use the 2-port model (x2)

By inspection

- Rin = 605
- Ai = 0
- Rout = 1k

Ao: Apply 1V to the input

•
$$V_1 = \left(\frac{605}{605 + 1000}\right) (-231V)$$

- $V_1 = -87.07V$
- $V_2 = -231V_1 = 20,114$

Ao = 20,114

Simulation Results

- Vin = 100uV 1kHz sine wave
- Vout = 1.409V sine wave
- Gain = 14,090
- (vs. 20,114 calculated)

Summary

- CE amplifiers provide high gain
- The 2-port model simplifies analysis when cascading amplifers
- The capacitors block the DC offset
- The capacitors prevent the source and load from changing the Q-point