
Poles, Zeros, and Frequency
Response

ECE 321: Electronics II
Lecture #8

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Poles, Zeros, and Frequency Response

With the previous circuits, you can build filters with

Real poles

Complex Poles, and

Zeros at s = 0

Filter design uses this to places poles and zeros to give a desired frequency

response.  In this lecture we look at how the poles and zeros affect the gain vs.

frequency for a filter.



Filter Analysis:  Single Input

Example:  Find y(t)

Y = 


100

s2+5s+30


X

x(t) = 4 cos(6t) + 5 sin(6t)

Solution

s = j6

X = 4 − j5

Y = 


100

s2+5s+30




s=j6

⋅ (4 − j5)

Y = −18.590 − j9.615

y(t) = −18.590 cos(6t) + 9.615 sin(6t)



Filter Analysis: Bode Plot

Given a filter, find the gain vs. frequency.

Easy:  Just plug into Matlab

Y = 


2s

s2+2s+10


X

w = [0:0.01:10]';
s = j*w;
G = 2*s ./ (s.^2 + 2*s + 10);
plot(w,abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');
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Filter Design

Pick poles and zeros to match a desired frequency response

harder

This lecture

How do real poles affect the gain vs. frequency

How to complex poles affect the gain vs. frequency

How to zeros affect the gain vs. frequency

Using fminsearch() to design a filter



Real Poles vs. Frequency Response

Y = 


1
s+a

X = 


1

jω+a

X

Graphical:

A maximum when you're closest to the pole (i.e. at w = 0).

Zero when you're far away from the pole (at infinity), and

Down by  when the frequency is ja2

a

jw

jw+a

-a

imag

real



Complex Poles vs. Frequecy Respons

Y = 


1

s+1−j10

X

Maximum at s = j10

Down by   when 1 rad/sec away from 10   (j9 and j11)2
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Example:  Determine G(s)
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Zero at s = 0

Pole at

s = j10

BW = 4 (real = 2)

s = -2 +/- j10

Pole at

s = j30

BW = 2 (real = 1)

s = -1 +/- j30

G(s) ≈ 


ks

(s+2±j10)(s+1±j30)



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Generalized Filter

Y = k
(s+z1)(s+z2)

(s+p1)(s+p2)(s+p3)


X

The graphical interpriation for this filter is

gain = k ⋅
Π(distance from jw to the zeros)

Π(distance from jw to the poles)

Note that

If you're close to a zero, the gain is small (multiply by a small number)

If you're close to a pole, the gain is large (divide by a small number)

So, a design strategy could be

Place zeros near frequencies you want to reject

Place poles near frequencies you want to pass.



Filter Design using fminsearch

Problem: Design a filter to approximate an ideal low-pass filter with a gain of

G ideal(s) ≈





1 ω < 4

0 otherwise

Guess filter parameters

poles, zeros, gain

Compute G(jw)

Compute the difference

E(jω) = G ideal(jω) − G(jω)

Compute the cost

J = ∫0

10
E2(jω) ⋅ dω

Use fminsearch to reduve the cost as much as possible



Real Poles:

G(s) = 


a

(s+b)(s+c)(s+d)(s+e)




function [ J ] = costf( z )
 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);
 
 w = [0:0.01:10]';
 s = j*w;
 Gideal = 1 .* (w < 4);
 
 G = a ./ ( (s+b) .* (s+c) .* (s+d) .* (s+e) );
 
 E = abs(Gideal) - abs(G);
 
 J = sum(E .^ 2);
 
end



Solution:  Not great with just real poles

[a,b] = fminsearch('costf',[100,2,3,4,5])

a =  697.8575    4.9165    4.9165    4.9165    4.9165
b =  55.3564
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Pole Location vs. Gain:  G(s) = 


697

(s+4.91)4



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Complex Poles:    G(s) =





a


s

2+bs+c

s

2+ds+e






function [ J ] = costf( z )
 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);
 
 w = [0:0.01:10]';
 s = j*w;
 Gideal = 1 .* (w < 4);

 G = a ./  ( (s.^2 + b*s + c) .* (s.^2 + d*s + e) );
 
 E = abs(Gideal) - abs(G);
 
 J = sum(E .^ 2);
 
end



Minimizing the cost:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =   36.6716   0.8314   12.3599  2.1860   3.1799
b =   13.0720

meaning

G(s) =





36.67


s

2+0.8314s+12.3599

s

2+2.1860s+3.1799








The gain vs. frequency and pole location looks like:
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5 Poles:  G(s) = 


a⋅c⋅e

(s+a)(s2+bs+c)(s2+ds+e)




function [ J ] = costf( z )
 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);
 
 w = [0:0.01:10]';
 s = j*w;
 Gideal = 1 .* (w < 4);
 
 G = a*c*e ./  ( (s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e ) );
 
 G = abs(G);
  
 E = abs(Gideal) - abs(G);
 
 J = sum(E .^ 2);
 
end



Running in Matlab:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =    1.2226    0.6761   13.5006    1.8855    5.7318

b =    9.6110

meaning

G(s) = 


96.4

(s+1.222)(s2+0.6761s+13.5)(s2+1.88s+5.73)



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Note that there is definately a pattern here:

You scatter N poles in the pass-band

Place the poles on an ellipse spanning the pass-band



Summary

Filter analysis is simple

Plug in s = jw

Filter design is a little harder

Place zeros by frequencies you want to reject

Place poles by frequencies you want to pass

Complex part of pole tells you the resonance frequency

Rel part of the pole tells you the bandwidth

fminsearch() can be used to design filters


