
Active Filters

ECE 321: Electronics II

Lecture #7

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Background:

Filters:  Circuits whose behaviour changes with frequncy

Any circuit with capacitors and/or inductors

Sinusoids are used to analysis

Allows you to use phasor analysis

Example:  RC Filter
dy

dt
+ 5y = 5x

x(t) y(t)

1uF

200k



Sinusoids

Eigenfunctions:  Output is the same as the input

Not true for square waves
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Phasor Anysis

Forced response with sinusoidal inputs

Example:  find y(t)
dy

dt
+ 5y = 5x

x(t) = sin (6t)

Solution:

sY + 5Y = 5X

Y = 


5

s+5

X

Y = 


5

s+5



s=j6

⋅ (0 − j1)

Y = −0.4918 − j0.4098

y(t) = −0.4918 cos (6t) + 0.4098 sin (6t)



Bode Plot

A Bode plot is graph showing the gain vs. frequency
w = [0:0.01:10]';
G = 5 ./ (j*w + 5);
plot(w, abs(G));
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Active Filters

A filter with an op-amp

Op-Amps allow:

Gains larger than one

High input impedances

Low output impedances

Real poles, and

Complex poles using only resistors and capacitors

Inductors tend to be large, lossy, prone to coupling, and expensive.

Circuits which only use capacitors and resistors tend to work much better.



Generalized Filter:

In general, a filter will be of the form

G(s) = k
(s+z1)(s+z2)

(s+p1)(s+p2)(s+p3)




where

zi are the zeros of the filter,

pi are the poles of the filter, and

k is a gain.

Today's lecture covers different circuits to implement a filter with

Real poles, and

Complex Poles



Real Poles:  Passive RC Filters

Problem:  Design a circuit to implement

Y = 


abc

(s+a)(s+b)(s+c)

X

Solution:  

a = 


1

R1C1




b = 


1

R2C2




c = 


1

R3C3




Notes:

This filter is easy to build (good), but

It's not a very good filter (gain drops off with frequency very fast)

+

-
X

R1 = 1k R2 = 10k R3 = 100k

C1 C2 C3

Y



Real Poles, No Zeros (take 2)

Y = −
a

s+b

X

where

a = 1

R2C

b = 1

R1C

Example:

Y = −
50

s+100

X

Let

C = 1uF  (arbitrary)

R1 = 10k

R2 = 20k

X

Y

R1

C

R2



Example: Design a filter to implement

Y = 


500

(s+2)(s+5)(s+10)

X

Option #1:

3-stage RC filter (poles at -3, -5, -10)

DC gain is 5.00

+

-
Y

X



Option #2:  Three 1st-order filters

−Y = 


−500

(s+2)(s+5)(s+10)

X = 


−5

s+2





−10

s+5





−10

s+10

X

+

-

+

-

+

- -Y

X



Complex Poles, No Zeros

Y =





k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2




X

This filter has two complex poles with

Amplitude =  
1

RC

Angle: 3 − k = 2 cos θ

DC gain k = 
1 +

R2

R1




Note that the angle of the poles goes from

0 degrees when k =1

90 degrees when k = 3 (an oscillator)

C C

R1

X R R

R2

Y

real

jw

s-plane pole

1/RC

k = 1

k = 3



Comples Polex, Two Zeros at s = 0

Y =





k⋅s2

s2+
3−k

RC

 s+

1

RC



2




X

This filter has two complex poles with

Amplitude =  
1

RC

Angle: 3 − k = 2 cos θ

High Freq gain k = 
1 +

R2

R1




X

Y

R2R1

C C

R R



Comples Polex, One Zeros at s = 0:

  Y = 


as

s2+bs+c


X

Y =








−
1

R1C


 s

s2+
2

R3C


 s+

R1+R2

R1R2








1

R3C2













X

+

-
X

Y

C

C
R1

R2

R3

A B

1/Cs

1/Cs

C C

R1

R R

R2

Y

C0

R0



Example: Design a circuit to implement

Y = 


1,244,485

(s+85)(s+121∠69.50)(s+121∠−69.50)


X

Rewrite this as

Y = 


85

s+85





14,641

(s+121∠69.50)(s+121∠−69.50)


X

Use the previous filters 

C C

R1

R R

R2

Y

C0

R0



To avoid loading, let

R0 = 10k

R = 100k

Matching terms in the denominator: 

                   


1

R0C0


 = 85 C0 = 1.17µF

                     


1

RC

 = 121 C = 0.082µF

3 − k = 2 cos (69.50)

k = 2.3

1 +
R2

R1
= 2.3

R1 = 100k,     R2 = 130k

Note: DC gain is 2.3.

C C

R1

R R

R2

Y

C0

R0



Example:  Design a filter to implement

Y =





100,000s2


s

2+14s+100

s

2+100s+10,000




X

Solution:  Rewrite this as the product of two filters:

Y =





s2


s

2+14s+100










10,000


s

2+100s+10,000




X

Using the previous circuits (building blocks),



C C

R1

R R

R2

R2R1

C C

R R

X

Y

                                         





k⋅s2

s2+
3−k

RC

 s+

1

RC



2











k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2








1st Stage:






k⋅s2

s2+
3−k

RC

 s+

1

RC



2




 =






s2


s

2+14s+100




 =






s2


s+10∠450 



s+10∠−450 








Ignore the numerator gain.  Match the denominator (the poles)

Matching the poles:




1

RC

 = 10

C = 1uF,    R = 100k

3 − k = 2 cos (450)

k = 1.5858

R1 = 100k,    R2 = 58k



2nd Stage






k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2




 =






10,000


s

2+100s+10,000




 =






10,000


s+100∠600 



s+100∠−600 











1

RC

 = 100

C = 1uF,   R = 10k

3 − k = 2 cos (600)

k = 2

R1 = R2 = 100k



Resulting Circuit

midband gain is 3.28  (vs. 1.000)

Call the output 3.28Y

C C

R1

R R

R2

R2R1

C C

R R

X

Y

100k 58k

1uF 1uF

100k 100k

100k 100k

1uF1uF

10k 10k

3.28Y



Summary

Filter design is like using Legos:  you cascade different building blocks

Step 1:  Factor the filter into sections with real and complex poles

Step 2:  Implement each section

Single real pole:  RC filter or RC active filter

Complex poles with no zeros

Complex poles with one zero at s=0

Complex poles with two zeros at s=0

Step 3:  Cascade sections


