
ECE 321: Handout #10

Fitler Design

Design a low-pass filter to meet the following specifications

- DC gain > 1.000
- 0. gain 1.0 for frequencies below 10 rad/sec
- gain 0.1 for frequencies above 20 rad/sec
- a) Determne the number of poles needed
- b) Give the transfer funciton of a Butterworth filter which should come close to meeting these requirements

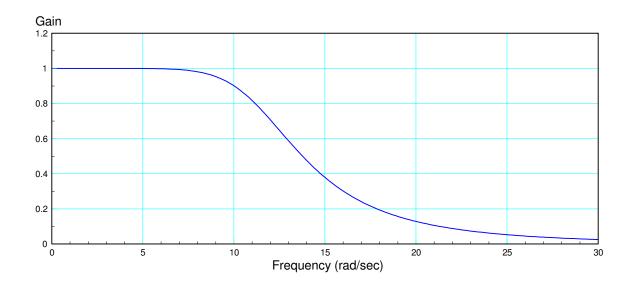
Solution

The number of poles needed are

$$\left(\frac{10\frac{rad}{\sec}}{20\frac{rad}{\sec}}\right)^n < 0.1$$

Let n > 6. A th-order Butterworth fitler with a corner at 1 rad/sec is

$$G(s) = \left(\frac{1}{\left(s+1 \angle \pm 22. \ ^{0}\right)\left(s+1 \angle \pm \ . \ ^{0}\right)}\right)$$


A th-order Butterworth filter with a corner at 12 rad/sec is

$$G(s) = \left(\frac{12r}{\left(s+12\angle \pm 22. \ ^{0}\right)\left(s+12\angle \pm \ . \ ^{0}\right)}\right)$$

12 is just a guess

- Something more than 10 and less than 20
- Id have to use matlab to itterate from here

```
w [0 0.1 0]
p1 12*exp j*22. *pi/1 0)
p2 conj p1)
p 12*exp j* . *pi/1 0)
p conj p )
s j*w
G 12^ ./ s+p1).* s+p2).* s+p ).* s+p ) )
plot w,abs G))
plot w,abs G),10,0. , x ,20,0.1, x )
```

